Machine Learning

Genetic Algorithms

Genetic Algorithms

- Developed: USA in the 1970's
- Early names: J. Holland, K. DeJong, D. Goldberg
- Typically applied to:
 - discrete parameter optimization
- Attributed features:
 - not too fast
 - good for combinatorial problems
- Special Features:
 - Emphasizes combining information from good parents (crossover)
 - many variants, e.g., reproduction models, operators

Oversimplified description of evolution

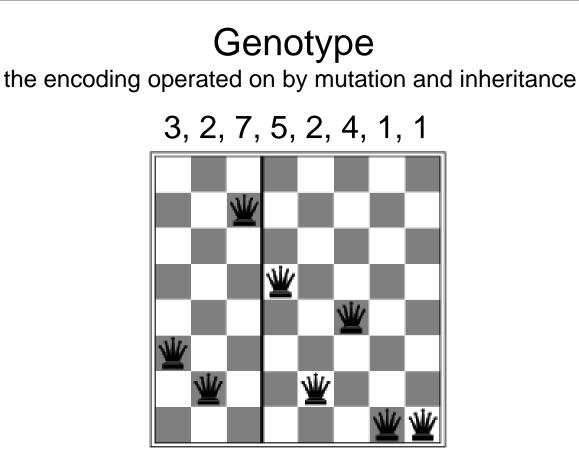
- There is a group of organisms in an environment
- At some point, each organism dies
- Before it dies each organism may reproduce
- The offspring are (mostly) like the parents
 - Combining multiple parents makes for variation
 - Mutation makes for variation
- Successes have more kids than failures
 - Success = suited to the environment = lives to reproduce
- Over many generations, the population will resemble the successes more than the failures

Genotypes and phenotypes

- *Genes*: the basic instructions for building an organism
- A *chromosome* is a sequence of genes
- Biologists distinguish between an organism's
 - *genotype* (the genes and chromosomes)
 - *phenotype* (the actual organism)
 - Example: You might have genes to be muscle-bound, but not grow to be so for other reasons (such as poor diet)
- Genotype->Phenotype mapping can be complex

Can involve "development," etc.

Genotype & Phenotype (1)



Phenotype the "real" thing

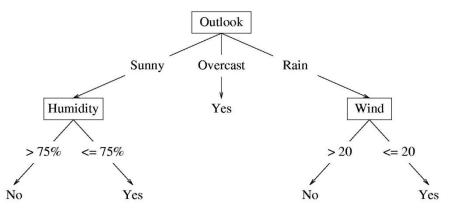
Genotype & Phenotype (2)

Genotype: Settings for decision tree learner

Attribute_Selection = InfoGain LaplacePrior = 0.2 LaplaceStrength = 2 examples Pruning = Off

Phenotype: Decision Tree

Trained on a dataset using the settings given in genotype



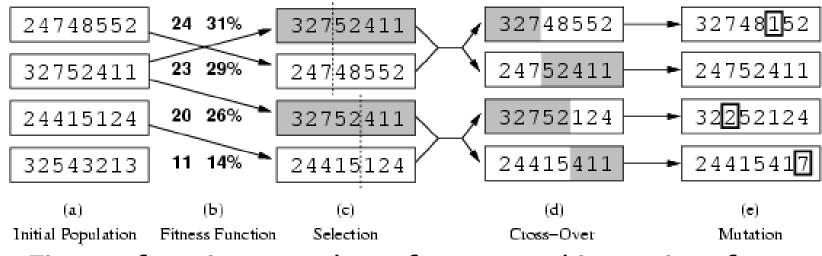
The basic genetic algorithm

- Start with a large population of randomly generated "attempted solutions" to a problem
- Repeatedly do the following:
 - Evaluate each of the attempted solutions
 - Keep a subset of these solutions (the "best" ones)
 - Use these solutions to generate a new population
- Quit when you have a satisfactory solution (or you run out of time)

Simple Genetic Algorithm (SGA)

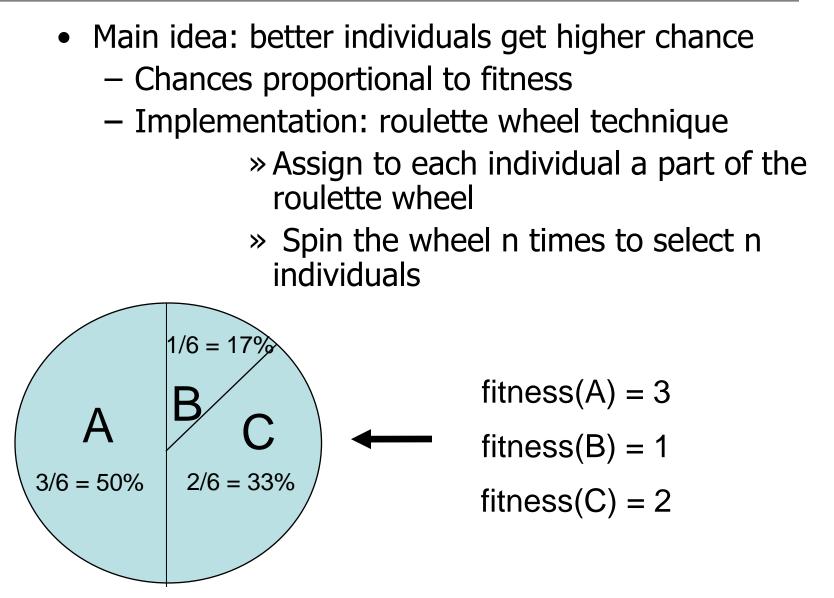
- Define an optimization problem
 - N queens
- Define a solution encoding as a string (genotype)
 - A sequence of digits: the ith digit is the row of the queen in column i.
- Define a fitness function
 - Fitness = How many queen-pairs can attack each other (lower is better)
- Define how mutation works
 - Each digit in the gene has prob. *p* of changing from the parent
- Define how inheritance works
 - Chances to be a parent determined by fitness
 - Two parents, one split-point.
- Define lifespan
 - All parents die before new generation reproduces

Genetic algorithms



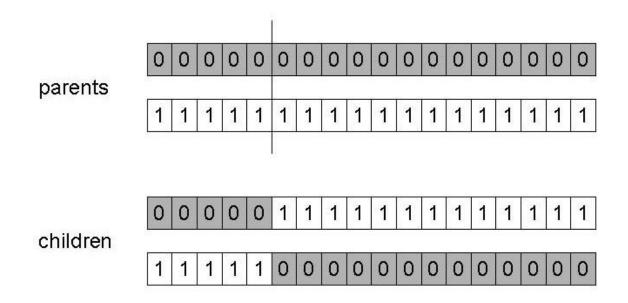
- Fitness function: number of non-attacking pairs of queens (min = 0, max = 8 × 7/2 = 28)
- 24/(24+23+20+11) = 31%
- 23/(24+23+20+11) = 29% etc

SGA operators: Selection



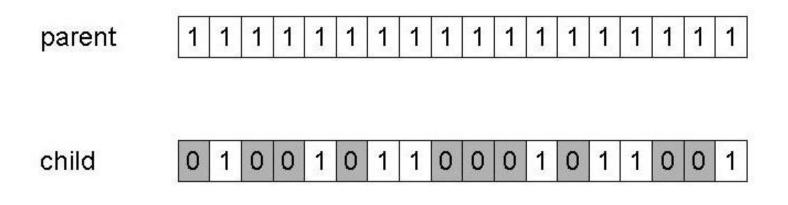
SGA operators: 1-point crossover

- Choose a random point on the two parents
- Split parents at this crossover point
- Create children by exchanging tails
- Fraction retained typically in range (0.6, 0.9)



SGA operators: mutation

- Alter each gene independently with a probability p_m
- *p_m* is called the mutation rate
 - Typically between 1/pop_size and 1/ chromosome_length



The simple GA (SGA)

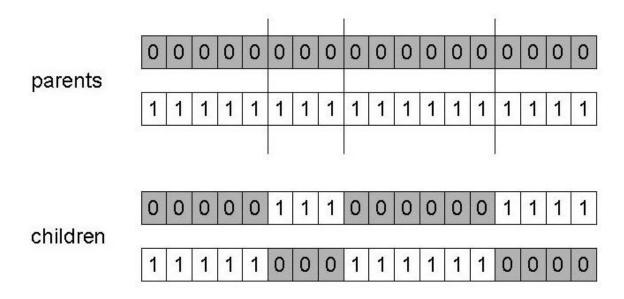
- Has been subject of many (early) studies
 still often used as benchmark for novel GAs
- Shows many shortcomings, e.g.
 - Representation (bit strings) is restrictive
 - Selection mechanism:
 - insensitive to converging populations
 - sensitive to absolute value of fitness function
 - Generational population model can be improved with explicit survivor selection

Positional Bias & 1 Point Crossover

- Performance with 1 Point Crossover depends on the order that variables occur in the representation
- *Positional Bias* = more likely to keep together genes that are near each other
- Can never keep together genes from opposite ends of string
- Can be exploited if we know about the structure of our problem, but this is not always the case

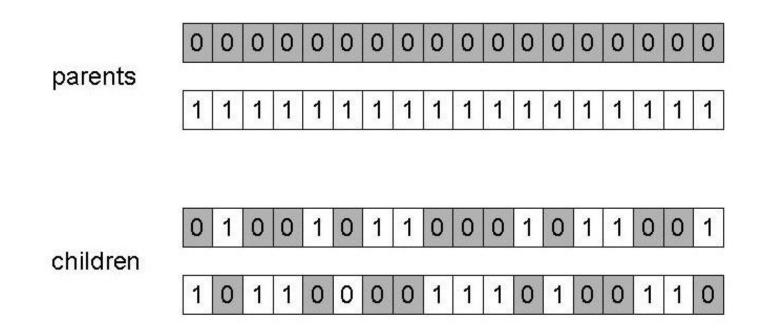
n-point crossover

- Choose n random crossover points
- Split along those points
- Glue parts, alternating between parents
- Generalisation of 1 point (still some positional bias)



Uniform crossover

- Assign 'heads' to one parent, 'tails' to the other
- Flip a coin for each gene of the first child
- Make inverse copy of the gene for the second child
- Inheritance is independent of position



Crossover OR mutation?

- Only crossover can combine information from two parents
- Only mutation can introduce new information (alleles)
- To hit the optimum you often need a 'lucky' mutation

Multiparent recombination

- Note that we are not restricted by nature
- Mutation uses 1 parent
- "traditional" crossover uses 2 parents
- Why not 3 or more parents?
 - Based on allele frequencies
 - p-sexual voting generalising uniform crossover
 - Based on segmentation and recombination of the parents
 - diagonal crossover generalising n-point crossover
 - Based on numerical operations on real-valued alleles
 - center of mass crossover,
 - generalising arithmetic recombination operators

Permutation Representations

- Task is (or can be solved by) arranging some objects in a certain order
 - Example: sort algorithm:
 - important thing is which elements occur before others (order)
 - Example: Travelling Salesman Problem (TSP)
 - important thing is which elements occur next to each other (<u>adjacency</u>)
- These problems are generally expressed as a permutation:
 - if there are *n* variables then the representation is as a list of *n* integers, each of which occurs exactly once
- How can we search this representation with a GA?

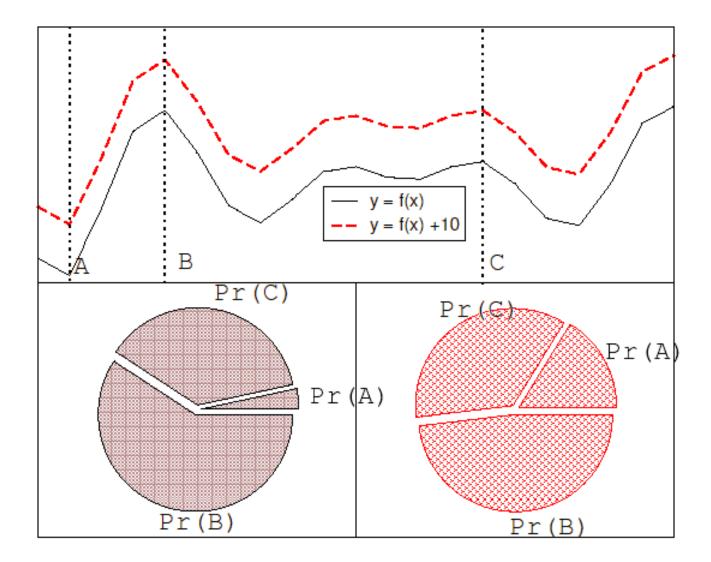
Population Models

- SGA uses a Generational model:
 - each individual survives for exactly one generation
 - the entire set of parents is replaced by the offspring
- At the other end of the scale are "Steady State" models (SSGA):
 - one offspring is generated per generation,
 - one member of population replaced,
- Generation Gap
 - the proportion of the population replaced
 - 1.0 for SGA, 1/pop_size for SSGA

Fitness-Proportionate Selection

- Premature Convergence
 - One highly fit member can rapidly take over if rest of population is much less fit
- Loss of "selection pressure"
 - At end of runs when fitness values are similar
- Highly susceptible to function transposition
- Scaling can help with last two problems
 - Windowing: $f'(i) = f(i) \beta^t$
 - where β is worst fitness in this generation (or last *n* gen.)
 - Sigma Scaling: $f'(i) = (f(i) \langle f \rangle)/(c \cdot \sigma_f)$
 - where *c* is a constant, usually 2.0

Function transposition for FPS



Rank – Based Selection

- Attempt to remove problems of FPS by basing selection probabilities on *relative* rather than *absolute* fitness
- Rank population according to fitness and then base selection probabilities on rank where fittest has rank μ and worst rank 1
- This imposes a sorting overhead on the algorithm, but this is usually negligible compared to the fitness evaluation time

Tournament Selection

- Rank based selection relies on global population statistics
 - Could be a bottleneck esp. on parallel machines
 - Relies on presence of absolute fitness function which might not exist: e.g. evolving game players
- Informal Procedure:
 - Pick k members at random then select the best of these
 - Repeat to select more individuals

Tournament Selection 2

- Probability of selecting *i* will depend on:
 - Rank of *i*
 - Size of sample k
 - higher *k* increases selection pressure
 - Whether contestants are picked with replacement
 - Picking without replacement increases selection pressure
 - Whether fittest contestant always wins (deterministic) or this happens with probability p
- For k = 2, time for fittest individual to take over population is the same as linear ranking with s = 2 • p

Concluding remarks

- Genetic algorithms are—
 - Fun!
 - Probably why they are a subject of active research
 - Slow
 - They look at a LOT of solutions
 - Challenging to code appropriately
 - 1/2 the work is finding the right representations
 - A bit overhyped (at least in the 90's)
 - Though genetic algorithms *can* sometimes come up with a solution when you can see no other way of tackling the problem