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Naive Bayes Classifiers

 Combines all ideas we’ve covered
— Conditional Independence
— Bayes’ Rule
— Statistical Estimation
— Bayes Nets

e ..inasimple, yet accurate classifier
— Classifier: Function f(x) from X = {<x, ..., x;>} to Class
— E.g., X ={<GRE, GPA, Letters>}, Class = {yes, no,
wait}



Probability => Classification (1 of 2)

e Classification Task:

— Learn function f(x) from X = {<x, ..., x,>} to Class
— Given: Examples D={(x, y)}

* Probabilistic Approach
— Learn P(Class=y | X=x) from D
— Given x, pick the maximally probable y



Probability => Classification (2 of 2)

 More formally
* f(x)=argmax, P(Class=y | X=X, & ysp)
— @ \np - MAP parameters, learned from data
* That is, parameters of P(Class=y | X = x)
— ...we’ll focus on using MAP estimate, but can also
use ML or Bayesian
* Predict next coin flip? Instance of this problem
— X =null
— Given D= hhht...tht, estimate P(@ | D), find MAP
— Predict Class = heads iff 8,,,p >



Example: Text Classification

Dear Sir/Madam,

We are pleased to inform you of the result of the Lottery
Winners International programs held on the 30/8/2004. Your
e-mail address attached to ticket number: EL-23133 with
serial Number: EL-123542, batch number: 8/163/EL-35,
lottery Ref number: EL-9318 and drew lucky numbers 7-1-8-
36-4-22 which consequently won in the 1st category, you
have therefore been approved for a lump sum pay out of
USS$1,500,000.00 (One Million, Five Hundred Thousand
United States dollars)

— ™

* SPAM NOT SPAM?




Representation

e X =document

e Estimate P(Class = {spam, non-spam} | X)

* Question: how to represent X?

* One dimension for each possible e-mail, i.e. possible

permutation of words?
— No.

* Lots of possibilities, common choice: “bag of words”

Dear Sir/Madam,

We are pleased to inform you of the result of the Lottery Winners
International programs held on the 30/8/2004. Your e-mail address
attached to ticket number: EL-23133 with serial Number: EL-
123542, batch number: 8/163/EL-35, lottery Ref number: EL-9318
and drew lucky numbers 7-1-8-36-4-22 which consequently won in
the 1st category, you have therefore been approved for a lump sum
pay out of US$1,500,000.00 (One Million, Five Hundred Thousand
United States dollars)
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Bag of Words

* Ignores Word Order, i.e.
— No emphasis on title

— No compositional meaning (“Cold War” -> “cold” and
llwar”

— Etc.
— But, massively reduces dimensionality/complexity

e Still and all...

— Recording presence or absence of a 100,000-word
vocab entails 224100,000 distinct vectors



Naive Bayes Classifiers

P(Class | X) for |Val(X)| = 272100,000 requires : N
27100,000 parameters
— Problematic.

Bayes’ Rule:
P(Class | X) = P(X | Class) P(Class) / P(X)

Assume presence of word i is independent of all
other words given Class:

P(Class | X) =I1. P(w; | Class) P(Class) / P(X)
Now only 200,001 parameters for P(Class | X)



Naive Bayes Assumption

Features are conditionally independent given class

— Not P(“Republican”, “Democrat”) = P(“Republican”)P(“Democrat”)

but instead
P(“Republican”, “Democrat” | Class = Politics) =
P(“Republican” | Class = Politics)P(“Democrat” | Class = Politics)

Still, an absurd assumption
— (“Lottery” L “Winner” | SPAM)? (“lunch” L “noon” | Not SPAM)?

But: offers massive tractability advantages and works quite
well in practice

— Lesson: Overly strong independence assumptions sometimes allow
you to build an accurate model where you otherwise couldn’t



Getting the parameters from data

* Parameters =< 6, =P(w, | Class = j) >

* Maximum Likelihood: Estimate P(w; | Class = j) from
D by counting
— Fraction of documents in class j containing word i
— But if word i never occurs in classj ?

e Commonly used MAP estimate:

— (# docs in class j with word i) + 1
(# docs in class j) + | V|




Caveats

* Naive Bayes effective as a classifier

* Not as effective in producing probability estimates

— IL P(w; | Class) pushes estimates toward O or 1

* |In practice, numerical underflow is typical at
classification time
— Compare sum of logs instead of product



Discriminative vs. Generative training

e Say our graph G has variables X, Y
* Previous method learns P(X, Y)

e But often, the only inferences we care about
are of form P(Y | X)
— P(Disease | Symptoms = e)
— P(StockMarketCrash | RecentPriceActivity = e)



Discriminative vs. Generative training

* Learning P(X, Y ): generative training
— Learned model can “generate” the full data X, Y
e Learning only P(Y | X): discriminative training
— Model can’t assign probs. to X —only Y given X
* |dea: Only model what we care about

— Don’t “waste data” on params irrelevant to task

— Side-step false independence assumptions in
training (example to follow)



Generative Model Example

* Naive Bayes model

— Y binary {1=spam, O=not spam}
X an n-vector: message has word (1) or not (0)

— Re-write P(Y | X) using Bayes Rule, apply Naive
Bayes assumption

— 2n + 1 parameters, for n observed variables
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Generative => Discriminative (1 of 3)

 But P(Y | X) can be written more compactly

P(Y | X) = 1
1+exp(wy+w, x,+..+w,X,)

* Total of n + 1 parameters w;,
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Generative => Discriminative (2 of 3)

* One way to do conversion (vars binary):

exp(w,)= P(Y = 0) P(X,=0|Y=0) P(X,=0|Y=0)...
P(Y =1) P(X,=0|Y=1) P(X,=0|Y=1)..

fori>0:
exp(w,)= P(X=0|Y=1) P(X=1|Y=0)
P(X=0]Y=0) P(X=1]Y=1)




Generative => Discriminative (3 of 3)

* We reduced 2n + 1 parameterston +1

— Bias vs. Variance arguments says this must be
better, right?

* Not exactly. If we construct P(Y | X) to be
equivalent to Naive Bayes (as before)
— then it’s...equivalent to Naive Bayes

* |dea: optimize the n + 1 parameters directly,
using training data



Discriminative Training

* |n our example:
P(Y | X) = 1
1+exp(wy+w,x,+...+w,X,)
* Goal: find w; that maximize likelihood of
training data Ys given training data Xs
— Known as “logistic regression”
— Solved with gradient ascent techniques
— A convex (actually concave) optimization problem
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Nailve Bayes vs. LR

* Naive Bayes “trusts its assumptions” in
training

* Logistic Regression doesn’t — recovers better
when assumptions violated



NB vs. LR: Example

Training Data

SPAM | Lottery | Winner | Lunch | Noon
1 1 1 0 0

1 1 1 1 1
0 0 0 1 1
0 1 1 0 1

* Naive Bayes will classify the last example incorrectly,
even after training on it!

* Whereas Logistic Regression is perfect with e.g.,
w,=0.1
WIottery = Wuinner = Wiunch = -0.2
Wy 00n = 0.4

noon



Logistic Regression in practice

Can be employed for any numeric variables X;

— or for other variable types, by converting to numeric
(e.g. indicator) functions

“Regularization” plays the role of priors in Naive
Bayes

Optimization tractable, but (way) more expensive
than counting (as in Naive Bayes)



Discriminative Training

* Nailve Bayes vs. Logistic Regression one
illustrative case

* Applicable more broadly, whenever queries
P(Y | X) known a priori



Data Set MNB-FM SFE

Apte (10) 0.306 0.271
Apte (100)  0.554 0.389
Apte (1k) 0.729 0.614
Amzn (10)  0.542 0.524
Amzn (100) 0.587 0.559
Amzn (1k)  0.687 0.611
RCV1 (10) 0.494 0477
RCV1 (100) 0.677 0.613
RCVI1 (1k) 0.772  0.735

* Limited to 5 of 10 Amazon categories




