Naïve Bayes Classifiers and Logistic Regression

Doug Downey Northwestern EECS 349 Winter 2014

Naïve Bayes Classifiers

- Combines all ideas we've covered
 - Conditional Independence
 - Bayes' Rule
 - Statistical Estimation
 - Bayes Nets
- ... in a simple, yet accurate classifier
 - Classifier: Function $f(\mathbf{x})$ from $\mathbf{X} = \{\langle x_1, ..., x_d \rangle\}$ to *Class*
 - E.g., X = {<GRE, GPA, Letters>}, Class = {yes, no, wait}

Probability => Classification (1 of 2)

- Classification Task:
 - Learn function $f(\mathbf{x})$ from $\mathbf{X} = \{\langle x_1, ..., x_d \rangle\}$ to *Class*
 - Given: Examples D={(x, y)}
- Probabilistic Approach
 - Learn P(Class = y | X = x) from D
 - Given **x**, pick the maximally probable y

Probability => Classification (2 of 2)

- More formally
 - $f(\mathbf{x}) = \arg \max_{y} P(Class = y | \mathbf{X} = \mathbf{x}, \boldsymbol{\theta}_{MAP})$
 - θ_{MAP} : MAP parameters, learned from data
 - That is, parameters of P(Class = y | X = x)
 - ...we'll focus on using MAP estimate, but can also use ML or Bayesian
- Predict next coin flip? Instance of this problem
 - -X = null
 - Given D= hhht...tht, estimate P($\theta \mid D$), find MAP
 - Predict *Class* = heads iff θ_{MAP} > $\frac{1}{2}$

Example: Text Classification

Dear Sir/Madam,

We are pleased to inform you of the result of the Lottery Winners International programs held on the 30/8/2004. Your e-mail address attached to ticket number: EL-23133 with serial Number: EL-123542, batch number: 8/163/EL-35, lottery Ref number: EL-9318 and drew lucky numbers 7-1-8-36-4-22 which consequently won in the 1st category, you have therefore been approved for a lump sum pay out of US\$1,500,000.00 (One Million, Five Hundred Thousand United States dollars)

NOT SPAM?

• SPAM

Representation

- **X** = document
- Estimate P(Class = {spam, non-spam} | X)
- Question: how to represent **X**?
 - One dimension for each possible e-mail, i.e. possible permutation of words?
 - No.
 - Lots of possibilities, common choice: "bag of words"

Dear Sir/Madam,		Sir	1
International programs held on the 30/8/2004. Your e-mail address attached to ticket number: EL-23133 with serial Number: EL-		Lottery	10
123542, batch number: 8/163/EL-35, lottery Ref number: EL-9318 and drew lucky numbers 7-1-8-36-4-22 which consequently won in	>	Dollars	7
the 1st category, you have therefore been approved for a lump sum pay out of US\$1,500,000.00 (One Million, Five Hundred Thousand		With	38
United States dollars) 			

Bag of Words

- Ignores Word Order, i.e.
 - No emphasis on title
 - No compositional meaning ("Cold War" -> "cold" and "war")
 - Etc.
 - But, massively reduces dimensionality/complexity
- Still and all...
 - Recording presence or absence of a 100,000-word vocab entails 2^100,000 distinct vectors

Naïve Bayes Classifiers

- *P*(*Class* | *X*) for |Val(*X*)| = 2^100,000 requires
 2^100,000 parameters
 - Problematic.
- Bayes' Rule:
 P(*Class* | *X*) = P(*X* | *Class*) P(*Class*) / P(*X*)
- Assume presence of word *i* is independent of all other words given *Class*:
 P(*Class* | *X*) = Π_i P(*w_i* | *Class*) P(*Class*) / P(*X*)
- Now only 200,001 parameters for *P*(*Class* | **X**)

Naïve Bayes Assumption

- Features are conditionally independent given class
 - Not P("Republican", "Democrat") = P("Republican")P("Democrat")
 but instead
 - P("Republican", "Democrat" | Class = Politics) =
 P("Republican" | Class = Politics)P("Democrat" | Class = Politics)
- Still, an absurd assumption
 - ("Lottery" \perp "Winner" | SPAM)? ("lunch" \perp "noon" | Not SPAM)?
- But: offers massive tractability advantages and works quite well in practice
 - Lesson: Overly strong independence assumptions sometimes allow you to build an accurate model where you otherwise couldn't

Getting the parameters from data

- Parameters $\theta = \langle \theta_{ij} = P(w_i | Class = j) \rangle$
- Maximum Likelihood: Estimate P(w_i | Class = j) from
 D by counting
 - Fraction of documents in class *j* containing word *i*
 - But if word *i* never occurs in class *j* ?
- Commonly used MAP estimate:
 - $\frac{(\# \text{ docs in class } j \text{ with word } i) + 1}{(\# \text{ docs in class } j) + |V|}$

Caveats

- Naïve Bayes effective as a *classifier*
- Not as effective in producing probability estimates
 Π_i P(w_i | Class) pushes estimates toward 0 or 1
- In practice, numerical underflow is typical at classification time
 - Compare sum of logs instead of product

Discriminative vs. Generative training

- Say our graph G has variables X, Y
- Previous method learns P(X, Y)
- But often, the only inferences we care about are of form P(Y | X)
 - P(Disease | Symptoms = e)
 - P(StockMarketCrash | RecentPriceActivity = e)

Discriminative vs. Generative training

- Learning P(X, Y): generative training
 Learned model can "generate" the full data X, Y
- Learning only P(Y | X): discriminative training
 Model can't assign probs. to X only Y given X
- Idea: Only model what we care about
 - Don't "waste data" on params irrelevant to task
 - Side-step false independence assumptions in training (example to follow)

Generative Model Example

- Naïve Bayes model
 - Y binary {1=spam, 0=not spam}
 X an n-vector: message has word (1) or not (0)
 - Re-write P(Y | X) using Bayes Rule, apply Naïve
 Bayes assumption
 - -2n + 1 parameters, for *n* observed variables

Generative => Discriminative (1 of 3)

- But P(Y | X) can be written more compactly P(Y | X) = $\frac{1}{1 + \exp(w_0 + w_1 x_1 + ... + w_n x_n)}$
- Total of n + 1 parameters w_i

Generative => Discriminative (2 of 3)

• One way to do conversion (vars binary):

$$\exp(w_0) = \frac{P(Y=0) P(X_1=0|Y=0) P(X_2=0|Y=0) \dots}{P(Y=1) P(X_1=0|Y=1) P(X_2=0|Y=1) \dots}$$

for
$$i > 0$$
:
 $exp(w_i) = P(X_i=0|Y=1) P(X_i=1|Y=0)$
 $P(X_i=0|Y=0) P(X_i=1|Y=1)$

Generative => Discriminative (3 of 3)

• We reduced 2n + 1 parameters to n + 1

– Bias vs. Variance arguments says this must be better, right?

Not exactly. If we construct P(Y | X) to be equivalent to Naïve Bayes (as before)

- then it's...equivalent to Naïve Bayes

 Idea: optimize the n + 1 parameters directly, using training data

Discriminative Training

- In our example: $P(Y \mid X) = 1$ $1 + \exp(w_0 + w_1 x_1 + ... + w_n x_n)$
- Goal: find w_i that maximize likelihood of training data Ys given training data Xs
 - Known as "logistic regression"
 - Solved with gradient ascent techniques
 - A convex (actually concave) optimization problem

Naïve Bayes vs. LR

 Naïve Bayes "trusts its assumptions" in training

 Logistic Regression doesn't – recovers better when assumptions violated

NB vs. LR: Example

SPAM	Lottery	Winner	Lunch	Noon
1	1	1	0	0
1	1	1	1	1
0	0	0	1	1
0	1	1	0	1

- Naïve Bayes will classify the last example incorrectly, even after training on it!
- Whereas Logistic Regression is perfect with e.g., $w_0 = 0.1$ $w_{\text{lottery}} = w_{\text{winner}} = w_{\text{lunch}} = -0.2$ $w_{\text{noon}} = 0.4$

Logistic Regression in practice

- Can be employed for any numeric variables X_i
 - or for other variable types, by converting to numeric (e.g. indicator) functions
- "Regularization" plays the role of priors in Naïve Bayes
- Optimization tractable, but (way) more expensive than counting (as in Naïve Bayes)

Discriminative Training

• Naïve Bayes vs. Logistic Regression one illustrative case

Applicable more broadly, whenever queries
 P(Y | X) known *a priori*

Data Set	MNB-FM	SFE	MNB	NBEM	LProp	Logist	
Apte (10)	0.306	0.271	0.336	0.306	0.245	0.208	
Apte (100)	0.554	0.389	0.222	0.203	0.263	0.330	
Apte (1k)	0.729	0.614	0.452	0.321	0.267	0.702	
Amzn (10)	0.542	0.524	0.508	0.475	0.470*	0.499	
Amzn (100)	0.587	0.559	0.456	0.456	0.498*	0.542	
Amzn (1k)	0.687	0.611	0.465	0.455	0.539*	0.713	
RCV1 (10)	0.494	0.477	0.387	0.485	-	0.272	
RCV1 (100)	0.677	0.613	0.337	0.470	-	0.518	
RCV1 (1k)	0.772	0.735	0.408	0.491	-	0.774	
* Limited to 5 of 10 Amazon categories							