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Naïve Bayes Classifiers 

• Combines all ideas we’ve covered 

– Conditional Independence 

– Bayes’ Rule 

– Statistical Estimation 

– Bayes Nets 

• …in a simple, yet accurate classifier 

– Classifier: Function f(x) from X = {<x1, …, xd>} to Class 

– E.g., X = {<GRE, GPA, Letters>}, Class = {yes, no, 
wait} 

 



Probability => Classification (1 of 2) 

• Classification Task: 
– Learn function f(x) from X = {<x1, …, xd>} to Class 

– Given: Examples D={(x, y)} 

 

• Probabilistic Approach 

– Learn P(Class = y | X = x) from D 

– Given x, pick the maximally probable y 



Probability => Classification (2 of 2) 
• More formally 

• f(x) = arg maxy P(Class = y | X = x,  MAP ) 

–  MAP  : MAP parameters, learned from data 
• That is, parameters of P(Class = y | X = x) 

– …we’ll focus on using MAP estimate, but can also 
use ML or Bayesian 

• Predict next coin flip?  Instance of this problem 
– X = null 

– Given D= hhht…tht, estimate P(  | D), find MAP 

– Predict Class = heads iff  MAP > ½ 



Example: Text Classification 
 

 

 

 

 

 

 

 

 

 

 

• SPAM      NOT SPAM?
      

Dear Sir/Madam,  
We are pleased to inform you of the result of the Lottery 
Winners International programs held on the 30/8/2004. Your 
e-mail address attached to ticket number: EL-23133 with 
serial Number: EL-123542, batch number: 8/163/EL-35, 
lottery Ref number: EL-9318 and drew lucky numbers 7-1-8-
36-4-22 which consequently won in the 1st category, you 
have therefore been approved for a lump sum pay out of 
US$1,500,000.00 (One Million, Five Hundred Thousand 
United States dollars)  



Representation 

• X = document 

• Estimate P(Class = {spam, non-spam} | X) 

• Question: how to represent X? 
• One dimension for each possible e-mail, i.e. possible 

permutation of words? 
– No. 

• Lots of possibilities, common choice: “bag of words” 

Dear Sir/Madam,  
We are pleased to inform you of the result of the Lottery Winners 
International programs held on the 30/8/2004. Your e-mail address 
attached to ticket number: EL-23133 with serial Number: EL-
123542, batch number: 8/163/EL-35, lottery Ref number: EL-9318 
and drew lucky numbers 7-1-8-36-4-22 which consequently won in 
the 1st category, you have therefore been approved for a lump sum 
pay out of US$1,500,000.00 (One Million, Five Hundred Thousand 
United States dollars)  
… 

Sir  1 
Lottery  10 
Dollars  7 
With  38 
… 



Bag of Words 

• Ignores Word Order, i.e. 

– No emphasis on title 

– No compositional meaning (“Cold War” -> “cold” and 
“war”) 

– Etc. 

– But, massively reduces dimensionality/complexity 

• Still and all… 

– Recording presence or absence of a 100,000-word 
vocab entails 2^100,000 distinct vectors 



Naïve Bayes Classifiers 

• P(Class | X) for |Val(X)| = 2^100,000 requires 
2^100,000 parameters 

– Problematic. 

• Bayes’ Rule:  
  P(Class | X) = P(X | Class) P(Class) / P(X) 

• Assume presence of word i is independent of all 
other words given Class: 

  P(Class | X) = i P(wi | Class) P(Class) / P(X) 

• Now only 200,001 parameters for P(Class | X)  



Naïve Bayes Assumption 

• Features are conditionally independent given class 
– Not P(“Republican”, “Democrat”) = P(“Republican”)P(“Democrat”) 

but instead 
P(“Republican”, “Democrat” | Class = Politics) =  
     P(“Republican” | Class = Politics)P(“Democrat” | Class = Politics) 

• Still, an absurd assumption 
– (“Lottery”  “Winner” | SPAM)?  (“lunch”  “noon” | Not SPAM)? 

• But: offers massive tractability advantages and works quite 
well in practice 
– Lesson: Overly strong independence assumptions sometimes allow 

you to build an accurate model where you otherwise couldn’t 



Getting the parameters from data 

• Parameters  = <  ij =P(wi | Class = j) > 

• Maximum Likelihood: Estimate P(wi | Class = j) from 
D by counting 

– Fraction of documents in class j containing word i 

– But if word i never occurs in class j ? 

• Commonly used MAP estimate: 

– (# docs in class j with word i) + 1 
          (# docs in class j) + |V| 



Caveats 

• Naïve Bayes effective as a classifier 
 

• Not as effective in producing probability estimates 

– i P(wi | Class) pushes estimates toward 0 or 1 

 

• In practice, numerical underflow is typical at 
classification time 

– Compare sum of logs instead of product 



Discriminative vs. Generative training 

• Say our graph G has variables X , Y  

• Previous method learns P(X , Y ) 

• But often, the only inferences we care about 
are of form P(Y | X) 

– P(Disease | Symptoms = e) 

– P(StockMarketCrash | RecentPriceActivity = e) 



Discriminative vs. Generative training 

• Learning P(X , Y ): generative training 

– Learned model can “generate” the full data X, Y 

• Learning only P(Y | X): discriminative training 

– Model can’t assign probs. to X – only Y given X 

• Idea: Only model what we care about 

– Don’t “waste data” on params irrelevant to task 

– Side-step false independence assumptions in 
training (example to follow) 



Generative Model Example 

• Naïve Bayes model 

– Y binary {1=spam, 0=not spam} 
X an n-vector: message has word (1) or not (0) 

– Re-write P(Y | X) using Bayes Rule, apply Naïve 
Bayes assumption 

– 2n + 1 parameters, for n observed variables 

Spam 

“Lottery” “winner” . . .  “Dear” 



Generative => Discriminative (1 of 3) 

• But P(Y | X) can be written more compactly 

P(Y | X) =                         1 
                1 + exp(w0 + w1 x1 + … + wn xn) 

• Total of n + 1 parameters wi 

“Lottery” “winner” . . .  “Dear” 

Spam 



Generative => Discriminative (2 of 3) 

• One way to do conversion (vars binary): 
 
exp(w0)= P(Y = 0) P(X1=0|Y=0) P(X2=0|Y=0)…                          
                 P(Y = 1) P(X1=0|Y=1) P(X2=0|Y=1)… 
 
 for i > 0: 
   exp(wi)= P(Xi=0|Y=1) P(Xi=1|Y=0) 

     P(Xi=0|Y=0) P(Xi=1|Y=1) 
 



Generative => Discriminative (3 of 3) 

• We reduced 2n + 1 parameters to n + 1 

– Bias vs. Variance arguments says this must be 
better, right? 

• Not exactly.  If we construct P(Y | X) to be 
equivalent to Naïve Bayes (as before) 

– then it’s…equivalent to Naïve Bayes 

• Idea: optimize the n + 1 parameters directly, 
using training data 

 



Discriminative Training 

• In our example: 
P(Y | X) =                         1 
                1 + exp(w0 + w1 x1 + … + wn xn) 

• Goal: find wi that maximize likelihood of 
training data Ys given training data Xs 

– Known as “logistic regression” 

– Solved with gradient ascent techniques 

– A convex (actually concave) optimization problem 



 



Naïve Bayes vs. LR 

 

• Naïve Bayes “trusts its assumptions” in 
training 

 

• Logistic Regression doesn’t – recovers better 
when assumptions violated 



NB vs. LR: Example 

 

 

 

 
• Naïve Bayes will classify the last example incorrectly, 

even after training on it! 

• Whereas Logistic Regression is perfect with e.g., 
w0 = 0.1  
wlottery = wwinner = wlunch = -0.2 
wnoon = 0.4 
 

SPAM Lottery Winner Lunch Noon 

1 1 1 0 0 

1 1 1 1 1 

0 0 0 1 1 

0 1 1 0 1 

Training Data 



Logistic Regression in practice 

• Can be employed for any numeric variables Xi 

– or for other variable types, by converting to numeric 
(e.g. indicator) functions 

 

• “Regularization” plays the role of priors in Naïve 
Bayes 

 

• Optimization tractable, but (way) more expensive 
than counting (as in Naïve Bayes) 



Discriminative Training 

 

• Naïve Bayes vs. Logistic Regression one 
illustrative case 

 

• Applicable more broadly, whenever queries 
P(Y | X) known a priori 



 


