Machine Learning

Neural Networks

(slides from Domingos, Pardo, others)

Human Brain

Neurons

Input-Output Transformation

Dendrites
Input ,/\ '
Spikes . Axon hillock Myelinated axan
N v _
' —_—
\’ Output
O \ Spike
} /#
Spike (= a brief pulse
g A A pike (pulse)
N
| I | N
Groded EPSP Trigger: Conducted ali-or-none spike

(conduction of spike to next cell)

Excitatory Post-Synaptic Potential) 9ll-or-none
(Y ynap) spike iniliated

Human Learning

e Number of neurons: ~ 1011

e Connections per neuron: ~ 103 to 10°

e Neuron switching time: ~ 0.001 second
e Scene recognition time: ~ 0.1 second

100 inference steps doesn’t seem much

Machine Learning Abstraction

Artificial Neural Networks

e Typically, machine learning ANNs are very
artificial, ignoring:
— Time
— Space
— Biological learning processes
e More realistic neural models exist

— Hodgkin & Huxley (1952) won a Nobel prize
for theirs (in 1963)

e Nonetheless, very artificial ANNs have
been useful in many ML applications

Perceptrons

e The “first wave” in neural networks

e Big in the 1960's

— McCulloch & Pitts (1943), Woodrow & Hoff
(1960), Rosenblatt (1962)

Perceptrons

e Problem def:
— Let /be a target function from
X= <Xy, X, ..> where x; {0, 1}
to
y {0, 1}
— Given training data {(X}, »1), (X, V5)...}
e Learn /7 (X), an approximation of 7(X)

A single perceptron

@ Bias (X, =1,always)

-

1if anwixi >0
1=0

Logical Operators

AND

L _JLif iZ:O:Wixi >0
0 else

o _)Lif iZ:():WiXi >0
0 else

L _JLif iZ:O:Wixi >0
0 else

Learning Weights

e Perceptron Training Rule
e Gradient Descent
o (other approaches: Genetic Algorithms)

Perceptron Training Rule

o Weights maodified for each training example
e Update Rule:

W, <— W, + AW
where

AW, =n(t—0)X

[N

learning target perceptron input
rate value output value

What weights make XOR?

_JL1if anwixi >0
- i=0

0 else

e No combination of weights works

e Perceptrons can only represent linearly
separable functions

Linear Separability

Linear Separability

Linear Separability

Perceptron Training Rule

e Converges to the correct classification IF

— Cases are linearly separable

— Learning rate i1saslow enough
— Proved by MinsHy and Papert in 1969

Killed widespread interest in perceptrons till the 80’s

XOR

o _)Lif iZ:():WiXi >0
0 else

; XOR
L _JLif iz—o:WiXi >0

0 else

o _)Lif iZ:():WiXi >0
0 else

What’s wrong with perceptrons?

e You can always plug multiple perceptrons
together to calculate any function.

e BUT...who decides what the weights are?

— Assignment of error to parental inputs
becomes a problem....

— This is because of the threshold....
e \Who contributed the error?

Perceptrons use a step function

 Perceptron Threshold
Step function

_JL1if anwixi >0
- i=0

0 else
?

e Small changes in inputs -> either no
change or large change in output.

Solution: Differentiable Function

4+ Simple linear function

—

e Varying any input a little creates a
perceptible change in the output

e \We can now characterize how error
changes w, even in multi-layer case

Measuring error for linear units

e Qutput Function

—

o(X)=wW-X
e Error Measure:

|
daté target linear unit
value output

Gradient Descent

Elw]

Training rule:

Gradient: AT = —V E[i
(0L OF oL
[&w(]’ Owq’ 8w”J Aw; = —n

ow;

Gradient Descent Rule

OW, OW. 2§70
— Z(td _Od)(_xl d)
deD
Update Rule:

W, < W, "‘772(td _Od)xi,d
deD

Gradient Descent for Multiple Layers

We can compute:

E

J

Gradient Descent vs. Perceptrons

e Perceptron Rule & Threshold Units

— Learner converges on an answer ONLY IF
data is linearly separable

— Can't assign proper error to parent nodes

e Gradient Descent

— (locally) Minimizes error even if examples are
not linearly separable
— Works for multi-layer networks

e But...linear units only make linear decision surfaces
(can’t learn XOR even with many layers)

— And the step function isn‘t differentiable...

A compromise function

e Perceptron -

outpUt = - 1 if g;wixi >0 I

0 else

e Linear n
output =net = > WX, |
i=0 '

e Sigmoid (Logistic)

1
1+e

output = o(net) =

—net

The sigmoid (logistic) unit

e Has differentiable function
— Allows gradient descent

e Can be used to learn non-linear functions

Logistic function

Output

0.6

Gender 0

“Probability
of beingAlive”
Stage a
Independent Coefficients Prediction
variables 1

n
— 2 W;X;

l+e =0

Neural Network Model

Age Output
0.6
Gender
“Probability
Stage of beingAlive”
Independent Weights Hidden Weights \?;ﬁggldeem

variables Layer
Prediction

Getting an answer from a NN

Inputs

Age Output

0.6

Gender

“Probability
Stage of beingAlive”

- : Dependent

Independent Weights ~ Hidden \eights varl?able

variables Layer
Prediction

Getting an answer from a NN

Inputs

Age Output

0.6

Gender

“Probability
Stage of beingAlive”

: - Dependent

Independent Weights ~ Hidden \eights var?able

variables Layer
Prediction

Getting an answer from a NN

Inputs
Age \ Output
5
Gender >
>‘/8 “Probability
Stage of beingAlive”
Independent Weights Hidden Weights \?;ﬁggf'eem

variables Layer
Prediction

Minimizing the Error

initial error
Error surface

negative derivative

final error

| mMinimum

Wlnltlal Wtralned

———
positive change

Differentiability is key!

e Sigmoid is easy to differentiate

oo (Y)
oy

e For gradient descent on multiple layers, a
little dynamic programming can help:
— Compute errors at each output node
— Use these to compute errors at each hidden node
— Use these to compute errors at each input node

=ao(y)-1-o(y))

The Backpropagation Algorithm

For each input training example, (X,t)

1. Inputinstance X to the network and computethe outputo,
for every unit u in the network

2. For each outputunit k, calculate its error term g,
5k — 0 (1_ Ok)(tk - Ok)

3. For each hidden unit h, calculate its error term ¢,

Oy < 0,(1-0,) D Wy,

keoutputs

4.Updateeach network weight w;

W;; <= W;; + 775kX,-i

Learning Weights

Age \ Output
o0 o
Gender >
o, ——
Stage of beingAlive”
Independent Weights Hidden Weights \I/D;rri)ggfleent

variables Layer

Prediction

The fine print

e Don't implement back-propagation
— Use a package

— Better second-order or variable step-size
optimization techniques exist

e Feature normalization

— Typical to normalize inputs to lie in [0,1]
e (and outputs must be normalized)

e Problems with NN training:
— Slow training times
— Local minima

Minimizing the Error

initial error
Error surface

negative derivative

final error

| mMinimum

Wlnltlal Wtralned

———
positive change

Expressive Power of ANNs

e Universal Function Approximator:

— Given enough hidden units, can approximate
any continuous function 7

e Need 2+ hidden units to learn XOR

e Why not use millions of hidden units?
— Efficiency (training is slow)
— Overfitting

Overfitting

Real Distribution Overfitted Model
e

Combating Overfitting in Neural Nets

e Many techniques

e Two popular ones:

— Early Stopping
e Use “a lot” of hidden units
e Just don't over-train

— Cross-validation

e Test different architectures to choose “right”
number of hidden units

ererr

Early Stopping

\

»>Stopping criterion

Epochs

Cross-validation

o Cross-validation: general-purpose technique for
model selection
— E.g., "how many hidden units should I use?”

o More extensive version of validation-set approach.

Cross-validation

e Break training set into k sets
e For each model M
— For i=1l..k
e Train M on all but set 1

s Test on set 1

e Output M with highest average test score,
trained on full training set

Summary of Neural Networks

When are Neural Networks useful?
— Instances represented by attribute-value pairs
e Particularly when attributes are real valued

— The target function is
e Discrete-valued
e Real-valued
e Vector-valued

— Training examples may contain errors
— Fast evaluation times are necessary

When not?

— Fast training times are necessary
— Understandability of the function is required

Summary of Neural Networks

Non-linear regression technique that is trained
with gradient descent.

Question: How important is the biological
metaphor?

Advanced Topics in Neural Nets

e Batch Move vs. incremental

e Hidden Layer Representations

o Hopfield Nets

e Neural Networks on Silicon

o Neural Network language models

Incremental vs. Batch Mode

Incremental mode Gradient Descent:

Do until satistied

e For each training example d in D

1. Compute the grac

Batch mode Gradient
Do until satisfied

lient V E[]
2.0 + w — nV Ey[]

Descent:

1. Compute the gradient V Ep|w]

2. %« W — nV Ep|id]

1
2d

Eplw] =

Z (IL‘{? — Of‘r’>2
leD

Incremental vs. Batch Mode

e In Batch Mode we minimize:

Eplw] = 5 {%D(t{; — 04)°

* Same as computing: AW, = » AW,
deD

e Then setting W « W+ AW,

Advanced Topics in Neural Nets

e Hidden Layer Representations

Hidden Layer Representations

e Input->Hidden Layer mapping:
— representation of input vectors tailored to the
task

e Can also be exploited for dimensionality
reduction

— Form of unsupervised learning in which we
output a “more compact” representation of
iInput vectors

— <Xy, X, > =-> <Xy, ..., X, > Where m<n

— Useful for visualization, problem simplification,
data compression, etc.

Dimensionality Reduction

Model:

[nputs

Outputs

Function to learn:

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Dimensionality Reduction: Example

Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001

Dimensionality Reduction: Example

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Sum of squared errors for each output unit

—————— — 1 T T T
= -'\:_- - _H-:h._.%h“-::-. —_—
B . '\.‘. \\\\ *\ —
A \
\
b
\ _
,
\ e e

. .

I I I e

Dimensionality Reduction: Example

Hidden unit encoding for input 01000000

1 T T T I P -

o

- ‘
.-"- :
P ‘
- ¢
P :
- P . -
. # ‘
- .
- _."
=" r
[} —J'Ir B - . _
. - .
.

0.6 F==

0.5 F \\ i
0.4 | \ _
0.3 | . -

0.2 } — -

[}1 | 1 | 1

Dimensionality Reduction: Example

Weights from inputs to one hidden unit
4 | | | ...

1 - . |
S o
0 "-**'2"‘—'-‘4“-"-“_—;—"-:._”“ == e - — msssamnnnsmmsnsnnn n amns e
-

0 500 1000 1500 2000 2500

Advanced Topics in Neural Nets

o Hopfield Nets

Advanced Topics in Neural Nets

e Neural Networks on Silicon

Neural Networks on Silicon

e Currently:

Digital computatior Why not
(thresholdin skip this?

Example: Silicon Retina

Simulates function (a) C
of biological retina

Single-transistor
synapses adapt to
luminance,
temporal contrast

Modeling retina
directly on chip

=> requires 100x lCTS fS
less power! S

WA

Example: Silicon Retina

e Synapses modeled with single transistors

vl

Inhibition

x|
O=

Excitation

Luminance Adaptation

spikes g1 spikes g1

spikes g spikes g

400

1

"~ W
0 . . -

400 1

" M
O 2 2

Comparison with Mammal Data

e Real:

o Artificial:

®) caty
A o
100 D@gﬂ‘. £ o 2
sy I
O ““ A L] DO | CdITI
AN A A 2 © 321
o A ® g |
o L % e o . *128
© O & % g & 51
e
) o 4 a Lumu.Luug 20
%10 1 10 50 o 6.4
. O % contrast '
| N TTTT N TRV -
(c)
OnT
1000 5
oecdm
i 0192
0 ! * 65
E]_I_LLLIJ.lll_I_I_IJ a 19
2100 1 10 50 «~ g
o % contrast
50

1 10 100
mean illumination (cd/m?)

e Graphics and results taken from:

INSTITUTE OF PHYSICS PUBLISHING JoumNAL OF NEURAL ENGINEERING

1. Meural Eng. 3 {2006) 257-267 doi: 10 T08S/1741-2560/3/4/002

A silicon retina that reproduces signals in
the optic nerve

Kareem A Zaghloul' and Kwabena Boahen”"

General NN learning in silicon?

e Seems less in-vogue than in late 90s

e Interest has turned somewhat to
implementing Bayesian techniques in
analog silicon

Advanced Topics in Neural Nets

o Neural Network language models

Neural Network Language Models

e Statistical Language Modeling:
— Predict probability of next word in sequence

I was headed to Madrid ,
P(__ =“spain”) = 0.5,
P(__ ="but”) = 0.2, etc.

e Used in speech recognition, machine
translation, (recently) information
extraction

e Estimate:

Formally

Neural Network

fr——— = = — — — — — - — —

) o . . output
| mput probability estimation layer |
Wi |- ' P11~
| . layer hidden A J J
' layer :
- 3
o Pi T
| : : > P(w;=ilh;)
W j_p b2 I P shared , : |
| I_ projections y
.
1y
|] P(w;j=N|h;)
| N N
discrete continuous LM probabilities
representation: representation: for all words

indices in wordlist P dimensional vectors

Optimizations

e Key idea — learn simultaneously:
— vector representations of each word (120 dim)
— predictor of next word. based on previous vectors

e Short-lists

— Much complexity in hidden->output layer
e Number of possible next words is large

— Only predict a subset of words
e Use a standard probabilistic model for the rest

Design Decisions (1)

e Number of hidden units

size 400 500 600 1000~

Tr. ttme | 11h20 | 13h50 | 16h15 | 11+16h
Px alone | 100.5 100.1 99.5 94.5
interpol. | 68.3 68.3 68.2 68.0

Werr | 13.99% | 13.97% | 13.96% | 13.92%

“ Interpolation of networks with 400 and 600
hidden units.

e Almost no difference...

Design Decisions (2)

e Word representatlon (# of dlmen5|ons)

120
dim 50
5 dim 60 i
) : dim 70 --------
dim 100 e
2 T dim 120 -
5 dim 150 --------
= 105
2
100 =
95 |
90 L 1 : : |
0 10 0 30 40
Epochs

e They chose 120

50

Comparison vs. state of the art

Back-off LM

Neural Network LM

Traming data [#words] 600M AM 22M | 92.5M” 600M*
Training time [h/epoch] - 2h40 14h 9h40 12h 3 x 12h
Perplexity (NN LM alone) - 103.0 97.5 84.0 80.0 76.5
Perplexity (interpolated LMs) 70.2 67.6 67.9 66.7 66.5 65.9
Word error rate (interpolated LMs) 14.24% 14.02% | 13.88% | 13.81% | 13.75% | 13.61%

* By resampling different random parts at the beginning of each epoch.

