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Neural Networks 
 

 
(slides from Domingos, Pardo, others) 
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Human Learning 

• Number of neurons:  ~ 1011 

• Connections per neuron: ~ 103  to 105 

• Neuron switching time: ~ 0.001 second 

• Scene recognition time: ~ 0.1 second 

 

100 inference steps doesn’t seem much 



Machine Learning Abstraction 



Artificial Neural Networks 

• Typically, machine learning ANNs are very 
artificial, ignoring: 
– Time 

– Space 

– Biological learning processes 

• More realistic neural models exist 
– Hodgkin & Huxley (1952) won a Nobel prize 

for theirs (in 1963) 

• Nonetheless, very artificial ANNs have 
been useful in many ML applications 



Perceptrons 

• The “first wave” in neural networks 

• Big in the 1960’s 

– McCulloch & Pitts (1943), Woodrow & Hoff 
(1960), Rosenblatt (1962) 

 



Perceptrons 

• Problem def: 

– Let f be a target function from  
X = <x1, x2, …> where xi {0, 1} 
to 
y {0, 1} 

– Given training data {(X1, y1), (X2, y2)…} 

• Learn h (X ), an approximation of f (X ) 

 

 



A single perceptron 
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Bias (x0 =1,always) 



Logical Operators 

-0.8 

0.5 

0.5 









 


                else  0

0  if  1
0

n

i

ii xw


x0 

x1 

x2 

AND 

-0.3 

0.5 

0.5 









 


                else  0

0  if  1
0

n

i

ii xw


x0 

x1 

x2 

OR 

0.1 

-1.0 








 


                else  0

0  if  1
0

n

i

ii xw


x0 

x1 

NOT 



Learning Weights 

• Perceptron Training Rule 

• Gradient Descent 

• (other approaches: Genetic Algorithms) 
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Perceptron Training Rule 

• Weights modified for each training example  

• Update Rule: 
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What weights make XOR? 

• No combination of weights works 

• Perceptrons can only represent linearly 
separable functions 
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Linear Separability 
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Perceptron Training Rule 

• Converges to the correct classification IF 

– Cases are linearly separable 

– Learning rate is slow enough 

– Proved by Minsky and Papert in 1969 

 

 Killed widespread interest in perceptrons till the 80’s 

 



XOR 
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What’s wrong with perceptrons? 

• You can always plug multiple perceptrons 
together to calculate any function. 

• BUT…who decides what the weights are? 

– Assignment of error to parental inputs 
becomes a problem…. 

– This is because of the threshold…. 

• Who contributed the error? 



Perceptrons use a step function 
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Perceptron Threshold 

Step function 

• Small changes in inputs -> either no 
change or large change in output. 



Solution: Differentiable Function 
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• Varying any input a little creates a 
perceptible change in the output 

• We can now characterize how error 
changes wi even in multi-layer case 



Measuring error for linear units 

• Output Function  

 

 

 

• Error Measure: 
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Gradient Descent 

Gradient: 

Training rule: 



Gradient Descent Rule 
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Gradient Descent for Multiple Layers 
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Gradient Descent vs. Perceptrons 

• Perceptron Rule & Threshold Units 
– Learner converges on an answer ONLY IF 

data is linearly separable 

– Can’t assign proper error to parent nodes  

• Gradient Descent 
– (locally) Minimizes error even if examples are 

not linearly separable 

– Works for multi-layer networks 
• But…linear units only make linear decision surfaces 

(can’t learn XOR even with many layers) 

– And the step function isn’t differentiable… 



A compromise function 
• Perceptron 

 

 

 

 

 

• Linear 

 

 
 

 

• Sigmoid (Logistic) 
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The sigmoid (logistic) unit 

• Has differentiable function 

– Allows gradient descent 

• Can be used to learn non-linear functions 
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Logistic function 
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Neural Network Model 
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Getting an answer from a NN 
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Getting an answer from a NN 



Getting an answer from a NN 

Inputs 

Weights 

Output 

Independent 

variables 

Dependent 

variable 

Prediction 

Age 34 

1 Gender 

Stage 4 

.6 

.5 

.8 

.2 

.1 

.3 
.7 

.2 

Weights Hidden

Layer 

“Probability 

of beingAlive” 

0.6 

S 



Minimizing the Error 
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Differentiability is key! 

• Sigmoid is easy to differentiate 

 

 

 

 

 

• For gradient descent on multiple layers, a 
little dynamic programming can help: 

– Compute errors at each output node 

– Use these to compute errors at each hidden node 

– Use these to compute errors at each input node 
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The Backpropagation Algorithm 
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Learning Weights 
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The fine print 

• Don’t implement back-propagation 

– Use a package 

– Better second-order or variable step-size 
optimization techniques exist 

• Feature normalization 

– Typical to normalize inputs to lie in [0,1] 

• (and outputs must be normalized) 

• Problems with NN training: 

– Slow training times 

– Local minima 



Minimizing the Error 
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Expressive Power of ANNs 

• Universal Function Approximator: 

– Given enough hidden units, can approximate 
any continuous function f 

• Need 2+ hidden units to learn XOR 

 

• Why not use millions of hidden units? 

– Efficiency (training is slow) 

– Overfitting 



Overfitting 

Overfitted Model Real Distribution 



Combating Overfitting in Neural Nets 

 

• Many techniques 

 

• Two popular ones: 

– Early Stopping 

• Use “a lot” of hidden units 

• Just don’t over-train 

– Cross-validation 

• Test different architectures to choose “right” 
number of hidden units 

 

 



Early Stopping 

b  = training set 

a  = validation set 

Overfitted model 

error 

Epochs 

min  (   error     ) 

error  a 

error  b 

Stopping criterion 



Cross-validation 

• Cross-validation: general-purpose technique for 
model selection  

– E.g., “how many hidden units should I use?” 

• More extensive version of validation-set approach. 

 



Cross-validation 

• Break training set into k sets 

• For each model M 

– For i=1…k 

•Train M on all but set i 

•Test on set i 

• Output M with highest average test score, 
trained on full training set 

 



Summary of Neural Networks 

When are Neural Networks useful? 

– Instances represented by attribute-value pairs 

• Particularly when attributes are real valued 

– The target function is 

• Discrete-valued 

• Real-valued 

• Vector-valued 

– Training examples may contain errors 

– Fast evaluation times are necessary 

When not? 

– Fast training times are necessary 

– Understandability of the function is required 



Summary of Neural Networks 

 

Non-linear regression technique that is trained 
with gradient descent. 

 
 

Question: How important is the biological 
metaphor? 



Advanced Topics in Neural Nets 

• Batch Move vs. incremental 

• Hidden Layer Representations 

• Hopfield Nets 

• Neural Networks on Silicon 

• Neural Network language models 

 



Incremental vs. Batch Mode 

 



Incremental vs. Batch Mode 

• In Batch Mode we minimize: 

 

 

• Same as computing: 
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Advanced Topics in Neural Nets 

• Batch Move vs. incremental 

• Hidden Layer Representations 

• Hopfield Nets 

• Neural Networks on Silicon 

• Neural Network language models 

 



Hidden Layer Representations 

• Input->Hidden Layer mapping: 

– representation of input vectors tailored to the 
task 

• Can also be exploited for dimensionality 
reduction 

– Form of unsupervised learning in which we 
output a “more compact” representation of 
input vectors 

– <x1, …,xn> -> <x’1, …,x’m> where m < n 

– Useful for visualization, problem simplification, 
data compression, etc. 



Dimensionality Reduction 

 Model:     Function to learn: 



Dimensionality Reduction: Example 

 



Dimensionality Reduction: Example 

 



Dimensionality Reduction: Example 

 



Dimensionality Reduction: Example 

 



Advanced Topics in Neural Nets 

• Batch Move vs. incremental 

• Hidden Layer Representations 

• Hopfield Nets 

• Neural Networks on Silicon 

• Neural Network language models 

 



Advanced Topics in Neural Nets 

• Batch Move vs. incremental 

• Hidden Layer Representations 

• Hopfield Nets 

• Neural Networks on Silicon 

• Neural Network language models 

 



Neural Networks on Silicon 

• Currently: 

Simulation of continuous device 
physics (neural networks) 

Digital computational model 
(thresholding) 

Continuous device physics 
(voltage) 

Why not 

skip this? 



Example: Silicon Retina 

Simulates function 
of biological retina 

Single-transistor 
synapses adapt to 
luminance, 
temporal contrast 

Modeling retina 
directly on chip 
=> requires 100x 
less power! 



Example: Silicon Retina 

• Synapses modeled with single transistors 

 



Luminance Adaptation 

 



Comparison with Mammal Data 

• Real: 

 

 

 

 

• Artificial: 



• Graphics and results taken from: 



General NN learning in silicon? 

• Seems less in-vogue than in late 90s 

 

• Interest has turned somewhat to 
implementing Bayesian techniques in 
analog silicon 



Advanced Topics in Neural Nets 

• Batch Move vs. incremental 

• Hidden Layer Representations 

• Hopfield Nets 

• Neural Networks on Silicon 

• Neural Network language models 

 



Neural Network Language Models 

• Statistical Language Modeling: 

– Predict probability of next word in sequence 

 

I was headed to Madrid , ____ 

 P(___ = “Spain”) = 0.5, 

 P(___ = “but”) = 0.2, etc. 

 

• Used in speech recognition, machine 
translation, (recently) information 
extraction 



• Estimate: 

Formally 
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Optimizations 

• Key idea – learn simultaneously: 

– vector representations of each word (120 dim) 

– predictor of next word. based on previous vectors 

 

• Short-lists 

– Much complexity in hidden->output layer 

• Number of possible next words is large 

– Only predict a subset of words 

• Use a standard probabilistic model for the rest 



Design Decisions (1) 

• Number of hidden units 

 

 

 

 

 

 

• Almost no difference… 



Design Decisions (2) 

• Word representation (# of dimensions) 

 

 

 

 

 

 

• They chose 120 

 

 

 



Comparison vs. state of the art 

 


