
Machine Learning

Neural Networks

(slides from Domingos, Pardo, others)

Human Brain

Neurons

Input-Output Transformation

Input

Spikes

Output

Spike

(Excitatory Post-Synaptic Potential)

Spike (= a brief pulse)

Human Learning

• Number of neurons: ~ 1011

• Connections per neuron: ~ 103 to 105

• Neuron switching time: ~ 0.001 second

• Scene recognition time: ~ 0.1 second

100 inference steps doesn’t seem much

Machine Learning Abstraction

Artificial Neural Networks

• Typically, machine learning ANNs are very
artificial, ignoring:
– Time

– Space

– Biological learning processes

• More realistic neural models exist
– Hodgkin & Huxley (1952) won a Nobel prize

for theirs (in 1963)

• Nonetheless, very artificial ANNs have
been useful in many ML applications

Perceptrons

• The “first wave” in neural networks

• Big in the 1960’s

– McCulloch & Pitts (1943), Woodrow & Hoff
(1960), Rosenblatt (1962)

Perceptrons

• Problem def:

– Let f be a target function from
X = <x1, x2, …> where xi {0, 1}
to
y {0, 1}

– Given training data {(X1, y1), (X2, y2)…}

• Learn h (X), an approximation of f (X)

A single perceptron









 


 else 0

0 if 1
0

n

i

ii xw


w1

w3

w2

w4

w5

x1

x2

x3

x4

x5

x0

w0

In
p
u
ts

Bias (x0 =1,always)

Logical Operators

-0.8

0.5

0.5









 


 else 0

0 if 1
0

n

i

ii xw


x0

x1

x2

AND

-0.3

0.5

0.5









 


 else 0

0 if 1
0

n

i

ii xw


x0

x1

x2

OR

0.1

-1.0








 


 else 0

0 if 1
0

n

i

ii xw


x0

x1

NOT

Learning Weights

• Perceptron Training Rule

• Gradient Descent

• (other approaches: Genetic Algorithms)









 


 else 0

0 if 1
0

n

i

ii xw


?
x0

?
x1

?
x2

Perceptron Training Rule

• Weights modified for each training example

• Update Rule:

iii www 

ii xotw)( 

where

learning

rate

target

value

perceptron

output

input

value

What weights make XOR?

• No combination of weights works

• Perceptrons can only represent linearly
separable functions









 


 else 0

0 if 1
0

n

i

ii xw


?

x0

?

x1

?
x2

Linear Separability

x1

x2

 

 

OR

Linear Separability

x1

x2

 

 

AND

Linear Separability

x1

x2

 

 

XOR

Perceptron Training Rule

• Converges to the correct classification IF

– Cases are linearly separable

– Learning rate is slow enough

– Proved by Minsky and Papert in 1969

 Killed widespread interest in perceptrons till the 80’s

XOR









 


 else 0

0 if 1
0

n

i

ii xw


0

x0

0.6
x1

0.6
x2









 


 else 0

0 if 1
0

n

i

ii xw


0

x0 







 


 else 0

0 if 1
0

n

i

ii xw


0

x0

XOR 1

1

-0.6

-0.6

What’s wrong with perceptrons?

• You can always plug multiple perceptrons
together to calculate any function.

• BUT…who decides what the weights are?

– Assignment of error to parental inputs
becomes a problem….

– This is because of the threshold….

• Who contributed the error?

Perceptrons use a step function









 


 else 0

0 if 1
0

n

i

ii xw


?

x0

?

x1

?
x2

Perceptron Threshold

Step function

• Small changes in inputs -> either no
change or large change in output.

Solution: Differentiable Function





n

i

ii xw
0



?

x0

?

x1

?
x2

Simple linear function

• Varying any input a little creates a
perceptible change in the output

• We can now characterize how error
changes wi even in multi-layer case

Measuring error for linear units

• Output Function

• Error Measure:

xwx


)(





Dd

dd otwE 2)(
2

1
)(



data

target

value

linear unit

output

Gradient Descent

Gradient:

Training rule:

Gradient Descent Rule














Dd

dd

ii

ot
ww

E 2)(
2

1





Dd

didd xot))((,





Dd

diddii xotww ,)(

Update Rule:

Gradient Descent for Multiple Layers

x0

x1

x2

x0

x0

XOR





n

i

ii xw
0







n

i

ii xw
0







n

i

ii xw
0



ijw

We can compute:






ijw

E

Gradient Descent vs. Perceptrons

• Perceptron Rule & Threshold Units
– Learner converges on an answer ONLY IF

data is linearly separable

– Can’t assign proper error to parent nodes

• Gradient Descent
– (locally) Minimizes error even if examples are

not linearly separable

– Works for multi-layer networks
• But…linear units only make linear decision surfaces

(can’t learn XOR even with many layers)

– And the step function isn’t differentiable…

A compromise function
• Perceptron

• Linear

• Sigmoid (Logistic)









 


 else 0

0 if 1
0

n

i

ii xw
output





n

i

ii xwnetoutput
0

nete
netoutput




1

1
)(



The sigmoid (logistic) unit

• Has differentiable function

– Allows gradient descent

• Can be used to learn non-linear functions

?

x1

?
x2





n

i
ii xw

e 01

1



Logistic function

Inputs

Coefficients

Output

Independent

variables
Prediction

Age 34

1 Gender

Stage 4

.5

.8

.4

0.6

S
“Probability

of beingAlive”





n

i
ii xw

e 01

1



Neural Network Model

Inputs

Weights

Output

Independent

variables

Dependent

variable

Prediction

Age 34

2 Gender

Stage 4

.6

.5

.8

.2

.1

.3
.7

.2

Weights Hidden

Layer

“Probability

of beingAlive”

0.6

S

S

.4

.2
S

Getting an answer from a NN

Inputs

Weights

Output

Independent

variables

Dependent

variable

Prediction

Age 34

2 Gender

Stage 4

.6

.5

.8

.1

.7

Weights Hidden

Layer

“Probability

of beingAlive”

0.6

S

Inputs

Weights

Output

Independent

variables

Dependent

variable

Prediction

Age 34

2 Gender

Stage 4

.5

.8

.2

.3

.2

Weights Hidden

Layer

“Probability

of beingAlive”

0.6

S

Getting an answer from a NN

Getting an answer from a NN

Inputs

Weights

Output

Independent

variables

Dependent

variable

Prediction

Age 34

1 Gender

Stage 4

.6

.5

.8

.2

.1

.3
.7

.2

Weights Hidden

Layer

“Probability

of beingAlive”

0.6

S

Minimizing the Error

w initial w trained

initial error

final error

Error surface

positive change

negative derivative

local minimum

Differentiability is key!

• Sigmoid is easy to differentiate

• For gradient descent on multiple layers, a
little dynamic programming can help:

– Compute errors at each output node

– Use these to compute errors at each hidden node

– Use these to compute errors at each input node

))(1()(
)(

yy
y

y









The Backpropagation Algorithm

jikjiji

ji

k

outputsk

hkhhh

h

kkkkk

k

u

xδww

w

δwooδ

δ

otooδ

δk

u

 ox

t,x










ight network weeach Update.4

)1(

 error term its calculate h,unit hidden each For .3

))(1(

 error term its calculate ,unit output each For 2.

network in the unit every for

output thecompute andnetwork the to instanceInput 1.

 example, ninginput traieach For




Learning Weights

Inputs

Weights

Output

Independent

variables

Dependent

variable

Prediction

Age 34

1 Gender

Stage 4

.6

.5

.8

.2

.1

.3
.7

.2

Weights Hidden

Layer

“Probability

of beingAlive”

0.6

S

The fine print

• Don’t implement back-propagation

– Use a package

– Better second-order or variable step-size
optimization techniques exist

• Feature normalization

– Typical to normalize inputs to lie in [0,1]

• (and outputs must be normalized)

• Problems with NN training:

– Slow training times

– Local minima

Minimizing the Error

w initial w trained

initial error

final error

Error surface

positive change

negative derivative

local minimum

Expressive Power of ANNs

• Universal Function Approximator:

– Given enough hidden units, can approximate
any continuous function f

• Need 2+ hidden units to learn XOR

• Why not use millions of hidden units?

– Efficiency (training is slow)

– Overfitting

Overfitting

Overfitted Model Real Distribution

Combating Overfitting in Neural Nets

• Many techniques

• Two popular ones:

– Early Stopping

• Use “a lot” of hidden units

• Just don’t over-train

– Cross-validation

• Test different architectures to choose “right”
number of hidden units

Early Stopping

b = training set

a = validation set

Overfitted model

error

Epochs

min ( error)

error a

error b

Stopping criterion

Cross-validation

• Cross-validation: general-purpose technique for
model selection

– E.g., “how many hidden units should I use?”

• More extensive version of validation-set approach.

Cross-validation

• Break training set into k sets

• For each model M

– For i=1…k

•Train M on all but set i

•Test on set i

• Output M with highest average test score,
trained on full training set

Summary of Neural Networks

When are Neural Networks useful?

– Instances represented by attribute-value pairs

• Particularly when attributes are real valued

– The target function is

• Discrete-valued

• Real-valued

• Vector-valued

– Training examples may contain errors

– Fast evaluation times are necessary

When not?

– Fast training times are necessary

– Understandability of the function is required

Summary of Neural Networks

Non-linear regression technique that is trained
with gradient descent.

Question: How important is the biological
metaphor?

Advanced Topics in Neural Nets

• Batch Move vs. incremental

• Hidden Layer Representations

• Hopfield Nets

• Neural Networks on Silicon

• Neural Network language models

Incremental vs. Batch Mode

Incremental vs. Batch Mode

• In Batch Mode we minimize:

• Same as computing:

• Then setting





Dd

dD ww


Dwww




Advanced Topics in Neural Nets

• Batch Move vs. incremental

• Hidden Layer Representations

• Hopfield Nets

• Neural Networks on Silicon

• Neural Network language models

Hidden Layer Representations

• Input->Hidden Layer mapping:

– representation of input vectors tailored to the
task

• Can also be exploited for dimensionality
reduction

– Form of unsupervised learning in which we
output a “more compact” representation of
input vectors

– <x1, …,xn> -> <x’1, …,x’m> where m < n

– Useful for visualization, problem simplification,
data compression, etc.

Dimensionality Reduction

 Model: Function to learn:

Dimensionality Reduction: Example

Dimensionality Reduction: Example

Dimensionality Reduction: Example

Dimensionality Reduction: Example

Advanced Topics in Neural Nets

• Batch Move vs. incremental

• Hidden Layer Representations

• Hopfield Nets

• Neural Networks on Silicon

• Neural Network language models

Advanced Topics in Neural Nets

• Batch Move vs. incremental

• Hidden Layer Representations

• Hopfield Nets

• Neural Networks on Silicon

• Neural Network language models

Neural Networks on Silicon

• Currently:

Simulation of continuous device
physics (neural networks)

Digital computational model
(thresholding)

Continuous device physics
(voltage)

Why not

skip this?

Example: Silicon Retina

Simulates function
of biological retina

Single-transistor
synapses adapt to
luminance,
temporal contrast

Modeling retina
directly on chip
=> requires 100x
less power!

Example: Silicon Retina

• Synapses modeled with single transistors

Luminance Adaptation

Comparison with Mammal Data

• Real:

• Artificial:

• Graphics and results taken from:

General NN learning in silicon?

• Seems less in-vogue than in late 90s

• Interest has turned somewhat to
implementing Bayesian techniques in
analog silicon

Advanced Topics in Neural Nets

• Batch Move vs. incremental

• Hidden Layer Representations

• Hopfield Nets

• Neural Networks on Silicon

• Neural Network language models

Neural Network Language Models

• Statistical Language Modeling:

– Predict probability of next word in sequence

I was headed to Madrid , ____

 P(___ = “Spain”) = 0.5,

 P(___ = “but”) = 0.2, etc.

• Used in speech recognition, machine
translation, (recently) information
extraction

• Estimate:

Formally

(
121 ,...,,|  njjjj wwwwP

(
jj hwP |

Optimizations

• Key idea – learn simultaneously:

– vector representations of each word (120 dim)

– predictor of next word. based on previous vectors

• Short-lists

– Much complexity in hidden->output layer

• Number of possible next words is large

– Only predict a subset of words

• Use a standard probabilistic model for the rest

Design Decisions (1)

• Number of hidden units

• Almost no difference…

Design Decisions (2)

• Word representation (# of dimensions)

• They chose 120

Comparison vs. state of the art

