EECS 395/495 Lecture 5: Web Crawlers

Doug Downey
Interlude: US Searches per User

<table>
<thead>
<tr>
<th>Year</th>
<th>Searches/month (mlns)</th>
<th>Internet Users (mlns)</th>
<th>Searches/user-month</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>10800</td>
<td>220</td>
<td>49.1</td>
</tr>
<tr>
<td>2009</td>
<td>14300</td>
<td>227</td>
<td>63.0</td>
</tr>
<tr>
<td>2010</td>
<td>15400</td>
<td>239</td>
<td>64.4</td>
</tr>
<tr>
<td>2011</td>
<td>16900</td>
<td>245</td>
<td>69.0</td>
</tr>
<tr>
<td>2012</td>
<td>18400</td>
<td>(est) 252</td>
<td>73.0</td>
</tr>
</tbody>
</table>
How Does Web Search Work?

• Inverted Indices
• Web Crawlers
• Ranking Algorithms
Web Crawlers

Web crawler

Indexer

Indexes

Ad indexes

User

Search

The Web

Crawling

Crawl($urls = \{ p_1, \ldots, p_n \}$)

- Retrieve some p_i from $urls$
- $urls -= p_i$
- $urls += p$’s links

Questions:
- Breadth-first or depth-first?
- Where to start?
- How to scale?
Our discussion mostly based on:
Mercator: A Scalable, Exensible Web Crawler (1999)
by Allan Heydon, Marc Najork
URLs: The Final Frontier

- URL frontier
 - Stores urls to be crawled
 - Typically breadth-first (LIFO queue)
- Mercator uses a set of subqueues
 - One subqueue per Web-page-fetching thread
 - When a new url is enqueued, the destination subqueue is based on host name
 - So access to a given host is serial
 - For politeness and bottleneck-avoidance
Etiquette

• Robots.txt
 – Tells you which parts of site you shouldn’t crawl
 – Web-page fetchers cache this for each host
by Allan Heydon, Marc Najork
HTTP/DNS

• Multiple Web-page-fetching threads download documents from specified host(s)

• Domain Name Service
 – Map host to IP address
 • www.yahoo.com -> 209.191.93.52
 – Well known bottleneck of crawlers
 • Exacerbated by synchronized interfaces
 – Solution: caching, asynchronous access
Caching Web Data

• Zipf Distribution
 – \text{Freq}(i\text{th most frequent element}) \propto i^{-z}
Caching Web Data

• Zipf Distribution
 – $\log \text{Freq}(i\text{th most frequent element}) \propto -z \log i$
Caching Web Data

• Thus:
 – Caching several hundred thousand hosts in memory saves a large number of disk seeks
 – Caching the rest on disk saves many DNS requests

• “Zipf’s Law” also applies to:
 – Web page accesses, term frequency, link distribution (in-degree and out-degree), search query frequency, etc.
 – City sizes, incomes, earthquake magnitudes...
by Allan Heydon, Marc Najork
URL Seen Test

• *Huge* number of duplicate hyperlinks
 – Est. 20x number of pages

• Goal: keep track of which URLs you’ve downloaded

• Problem: Lots of data
 – So use hashes
Brief Review of Hashing

• Hash function
 – Maps a data object (e.g., a URL) to a fixed-size binary representation
 – Mercator used Rabin’s *fingerprinting* algorithm
 • For n strings of length $< m$, and fingerprint of length k
 \[P(\text{two strings have same representation}) \leq \frac{nm^2}{2^k} \]

Some applications of Rabin’s fingerprinting method
[Broder, 1993]
Hashing for URL Seen Test

- For urls of length < 1000 and 20,000,000,000 Web pages, 128-bit hashes:

$$P(\text{any two strings have same representation}) \leq \frac{nm^2}{2^k} \approx 10^{-15}$$

- Tiny chance of any collisions
- Thus: just store & check the hashes
 - Space savings: 12x (assuming avg. 100 bytes/url)
 - Also translates to efficiency gains
Storing/Querying URLs Seen

• We have a list of URL hashes we’ve seen
 – Smaller than text urls, but still large
 – 20B urls * 16 bytes/url = 320GB

• How do we store/query it?
 – Store it in sorted form (with in-memory index)
 – Query with binary search
Wrinkles

• Store *two* hashes instead of one
 – One for host name, one for rest of url
 – Store as <host name hash><rest of url hash>
 – Why?
 – Exploit disk buffering

• Also use an in-memory cache of popular URLs

• In Mercator, all this together results in about $\frac{1}{6}$ seek and read ops per URL Seen test
by Allan Heydon, Marc Najork
Content Seen?

• Many different URLs contain the same content
 – One website under multiple host names
 – Mirrored documents
 – >20% of Web docs are duplicates/near-duplicates
How to detect?

• Naïve: store each page’s content and check
• Better: use hashes
 – Mercator does this
• Some issues
 – Poor cache locality
 – What about similar pages?
Alternative Technique

• Compute binary feature vectors for each doc
 – E.g. term incidence vectors
 \[<1:1, 192:1, 4002:1, 4036:1, \ldots>\]
 – Generate 100 random permutations of the vectors
 e.g. \[1\rightarrow40002, 2\rightarrow5, 3\rightarrow1, 4\rightarrow2031, \ldots\]
 – For each document \(D\), store a vector \(v_D\) containing the minimum feature for each permutation.
 – Compare these representations
 • Much smaller than original feature vector
 • ...but comparison is still expensive (see later techniques)
• Next time: Document ranking & Link Analysis