EECS 395/495: Web Information Retrieval and Extraction

Spring 2011
Outline

• Introductions
• Course goals and logistics
• Why take this class?
• What is Web Search?
 – What will it be in five years? Ten years?
Introductions

• Professor: Doug Downey
• TA: Vaibhav Rastogi
Goals

• Learn:
 – How does Web search work?
 – What’s the future of Web search?

• Learn how to:
 – Analyze, discuss, and present research papers
 – Do projects at the frontier of Web search and information extraction
Logistics

• Tuesdays: lectures

• Thursdays: debates on research papers
 – Offense and Defense (2 on each side)
 • Defense (in favor of paper) starts with a 10 minute presentation on the key ideas
 – Then, offense/defense debate, with participation from all
 – Debaters graded by prof, TA, and peers
 • See Web page and sign up (e-mail TA) this week
Logistics

• Grading
 – Participation (30%)
 • During lectures/discussions (5%)
 • Leading a debate (15%)
 • Synopses of papers (10%)
 – Projects (70%)
 • Project grade, based on individual contribution (60%)
 • Review of another team’s project (10%)
Paper synopses

• About two paragraphs, due each Thursday
 – Incl. this Thursday – paper TBA this evening
 – Turn-in via e-mail to prof and TA

• Include:
 – Brief summary of what the paper says and its main contributions
 – One potential flaw in the paper
 – One suggested “next step” for the paper
Projects

• Groups of 2-4 (*not necessarily = debate groups*)
• Examples:
 – Read 3-5 recent research papers and summarize the state of the art in some area of IR/IE
 – Implement an IR/IE system and report on the results
 – Answer theoretical questions
 – Etc.
Specific Examples

• Systems
 – Create a search “knob” for specifying reading level
 – Execute relevant background searches as I write an e-mail
 – Automatically monitor bias in search engines

• Theoretical questions
 – Read a paper on search ad auctions or PageRank and attempt to extend the results

• Summary of Research
 – Read 5 papers on automated question answering; summarize the field and suggest future directions
Project Milestones

- **April 11**: Proposal (~1 page)
 - Meetings with me to finalize **April 12/13**

 ...lots of progress...

- **May 9**: Report preliminary results (~2 pages)
 - **May 11**: Review group provides feedback (~1 page)
- **June 1**: Final Report (~4 pages)
- **June 2/June 8**: Final Presentations
 (~8 mins + 3 min for Q&A)
Outline

• Introductions
• Course goals and logistics
• **Why take this class?**
• What is Web Search?
 – What will it be in five years? Ten years?
Who cares about search?

• "The most important application for the foreseeable future...is search."
 – Steve Ballmer, CEO of Microsoft

• Why?

 – Search’s utility scales as the Web scales
 – People use it all the time
 – Control
 – Profit
Why should you care about search?

• Opportunity
• Fascinating & important enabling technologies:
 – Scaling
 – Machine Learning/Data Mining
 – Graph-based algorithms
 – Language Understanding
 – Auction theory
 – User Interfaces
 – ...

Graph-based Algorithms

• Example: PageRank
 – Google’s original claim to fame
 – Idea: Quality of p is proportional to the aggregate quality of the pages linking to p

• $\text{PageRank}(p) = \text{probability that a “random surfer” lands on } p$
 – Pick a starting page at random
 – Follow links uniformly at random
 • Every now and then, jump to a random page
 – $\text{PageRank}(p) = \text{proportion of visits to } p$
PageRank example

15% probability of a random jump
How to compute PageRank

• Simulate a random surfer?
 – On 20 billion pages and 400 billion hyperlinks...
• It can be done
 – You’ll learn how
• What about:
 – Personalized PageRank? Link spam?
What do you need to take this class?

• EECS 311
 – basic understanding of algorithms and data structures

• Helpful:
 – Basics of linear algebra and probability theory

• Willingness to participate
Outline

• Introductions
• Course goals and logistics
• Why take this class?

• What is Web Search?
 – What will it be in five years? Ten years?
Web Search today...

- Performs an **easy** task
- Extremely **quickly**
- At massive **scale**
- Relatively **well**
Easy?

• **Belief**: Web Search engines have to understand my query and find a needle in a haystack of 20 billion documents!

• **Reality**: *Most* search queries are
 – **short** (avg. ~2.5 words [2005])
 – satisfied by pages from a **small subset** of the Web
 • Millions rather than billions [Mei et al., 2008]

=> More like finding a *pencil* in a haystack!
Extremely Quickly

• Results returned in < 1 sec
 – For any query
 – For any engine

• It was not always thus!
 – 3-4 seconds in early days ([Chu & Rosenthal, 1996; Garratt et al. 2001])

• How? Inverted indices, enormous data centers, clever algorithms...
Users are quick too...

\[P(\text{Click at delay } < t) \]

[Downey, Dumais, & Horvitz 2007]
At Massive Scale

<table>
<thead>
<tr>
<th>Search Engine</th>
<th>February 2008</th>
<th>Searches per Day February 2008</th>
<th>February 2009</th>
<th>Searches per Day February 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>9882</td>
<td>341</td>
<td>13104</td>
<td>468</td>
</tr>
<tr>
<td>Google</td>
<td>5855</td>
<td>202</td>
<td>8293</td>
<td>296</td>
</tr>
<tr>
<td>Yahoo!</td>
<td>2136</td>
<td>74</td>
<td>2696</td>
<td>96</td>
</tr>
<tr>
<td>Microsoft</td>
<td>953</td>
<td>33</td>
<td>1073</td>
<td>38</td>
</tr>
<tr>
<td>Ask</td>
<td>488</td>
<td>17</td>
<td>536</td>
<td>19</td>
</tr>
<tr>
<td>AOL</td>
<td>450</td>
<td>16</td>
<td>507</td>
<td>18</td>
</tr>
</tbody>
</table>

(in millions)

Jan 2011: **18.5 Billion**

How? Inverted indices, enormous data centers, clever algorithms...

http://blog.searchenginewatch.com/comscoresearchsharefeb2009_0309.jpg
Relatively Well

- **SERP click**
- **URL visit**
- **Requery**

Y-axis: Fraction of events

X-axis: Query frequency

- Tail
- 1-9
- 10-99
- 100-999
- 1000-9999
Web Search Engines today...

• For the most part:
 – Perform an easy task
 – Extremely quickly
 – At massive scale
 – Relatively well

• The future of Web search is in more difficult tasks
Trend toward more difficult queries

- Search queries are getting longer (sort of)

- Note: To see data this slide and next, search for “Percentage of US clicks by number of keywords”
Trend toward more difficult queries

• Search queries are getting longer? Sort of
Things you can’t do with search today

• Query by *description* rather than *content*
 – Humorous anecdotes about frogs

• Extracting and synthesizing over multiple pages
 – Nanotechnology companies hiring on the West Coast
 – Substances the FDA has banned

• Organizing bodies of documents
 – Show me the most compelling cases for or against QE2
 – Who says drinking from aluminum soda cans increases my Alzheimer's risk? Should I believe them?
2009 Image Search for **famous pink building**
Bing and Decide!

- Google “owns” algorithmic document search
Competitive Landscape

<table>
<thead>
<tr>
<th>Core Search Entity</th>
<th>1/10: Search Share (%)</th>
<th>1/11-2-11: Explicit Core Search Share (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan-10</td>
<td>Jan-11</td>
</tr>
<tr>
<td>Google Sites</td>
<td>65.4%</td>
<td>65.6%</td>
</tr>
<tr>
<td>Yahoo! Sites</td>
<td>17.0%</td>
<td>16.1%</td>
</tr>
<tr>
<td>Microsoft Sites</td>
<td>11.3%</td>
<td>13.1%</td>
</tr>
<tr>
<td>Ask Network</td>
<td>3.8%</td>
<td>3.4%</td>
</tr>
<tr>
<td>AOL, Inc.</td>
<td>2.5%</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

Source: ComScore, Inc.
Bing and Decide!

• Google “owns” algorithmic document search

• Bing’s strategy:
 – Searchers intend to complete **tasks**
 – Today: search engines are the **first** step
 – Goal: Have engine do the first k steps
Reminder

• 2-paragraph paper summary due Thursday

• Sign-up for papers this week

• Look for e-mail on these items this evening