EECS 395/495 Lecture 3
Scalable Indexing, Searching, and Crawling

Doug Downey

Based partially on slides by Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze
Announcements

• Project “progress report” due **May 9**
 – ...reviews due **May 11**
Last time: Inverted index

Dictionary

Brutus

Calpurnia

Caesar

Postings lists

Posting

Sec. 1.2

1

2

3

5

8

13

16

21

34

1

2

3

4

8

16

32

64

128

13

16
How Does Web Search Work?

• Inverted Indices
 – Inverted Indices enable fast IR
 – Tokenization & Linguistic issues
 – Handling phrase queries
 – **Scalable, distributed construction & deployment**

• Web Crawlers

• Ranking Algorithms
Today’s Outline

• Index compression
• Distributed Indexing
 – MapReduce
• Distributed Searching
Index Compression

Dictionary

Postings lists

Brutus

Calpurnia

Caesar

Posting

Sec. 1.2
Postings compression

• The postings file is much larger than the dictionary, factor of at least 10.
• **Key goal:** store each posting compactly.
 – A posting for our purposes is a docID.
 – Naïve: use $\log_2 20,000,000,000 \approx 34$ bits per docID.
• Our goal: use a lot less than 34 bits per docID.
Postings: two conflicting forces

• Common terms (e.g. *the*)
 – 34 bits/posting is too expensive
 – Prefer 0/1 document incidence vector in this case
 • If *the* appears in half the docs => savings of $17x$!

• Rare terms (e.g. *arachnocentric*)
 – Say it occurs once every million docs, on average
 – 0/1 document incidence vector is a disaster
 • $\log_2 1M \approx 20$ bits/occurrence uses $50,000x$ less space!
Postings file entry

• We store the list of docs containing a term in increasing order of docID.
 – `computer`: 33, 47, 154, 159, 202 …

• **Consequence**: it suffices to store *gaps*.
 – 33, 14, 107, 5, 43 …

• **Hope**: most gaps can be encoded/stored with far fewer than 34 bits.
Example: Three postings entries

<table>
<thead>
<tr>
<th></th>
<th>encoding</th>
<th>postings list</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE</td>
<td>.docIDs</td>
<td>283042</td>
</tr>
<tr>
<td></td>
<td>gaps</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>283043</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>283044</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>283045</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>COMPUTER</td>
<td>.docIDs</td>
<td>283047</td>
</tr>
<tr>
<td></td>
<td>gaps</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td></td>
<td>283154</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>283159</td>
</tr>
<tr>
<td></td>
<td></td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>ARACHNOCENTRIC</td>
<td>.docIDs</td>
<td>252000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500100</td>
</tr>
<tr>
<td></td>
<td>gaps</td>
<td>252000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>248100</td>
</tr>
</tbody>
</table>

Preserves linear-time merge
 – just keep track of sum as you traverse postings
Variable length encoding

• Aim:
 – For *arachnocentric*, use ~20 bits/gap entry.
 – For *the*, use ~1 bit/gap entry.
 – More generally:
 • to encode a gap with integral value G, use $\sim \log_2 G$ bits

• Standard, fixed n-bit `int` won’t work here
 – Solution: *Variable length codes*
Variable Byte (VB) codes

• For a gap value G
 – Begin with one byte to store G and dedicate 1 bit in it to be a *continuation* bit c
 – If $G \leq 127$, binary-encode it in the 7 available bits and set $c = 1$
 – Else
 • Encode G’s lowest-order 7 bits, put in rightmost byte
 • Encode G’s higher-order bits in additional bytes to left
 • When finished, set continuation bits:
 last byte $c = 1$; other bytes $c = 0$
Postings stored as the byte concatenation
000001101011100010000101000011010111000100001100101110001

Key property: VB-encoded postings are uniquely prefix-decodable.

For a small gap (5), VB uses a whole byte.
Benefits from index compression

• Shrink index to ~15% the size of original text!
• ...but we ignored positional information
 – In practice savings are more limited
 (about 30%-50% of original text)
 – Techniques are substantially the same
Today’s Outline

• Index compression
• **Distributed Indexing**
 – MapReduce
• Distributed Searching
Indexing at Web-scale....

- Sort by terms.

Core indexing step.

And we have to sort postings too...how do we do this with 20 billion documents?
Distributed indexing

• For web-scale indexing:
 use a distributed computing cluster
• Individual machines are fault-prone
 – Can unpredictably slow down or fail
• How do we exploit such a pool of machines?
Data centers

• Mainly commodity machines
• Distributed around the world
• Estimates for Google:
 – At least 1 million servers, est. 2% of worldwide supply (datacenterknowledge.com, 2010)
 – Approximately 200,000 new servers each quarter, based on expenditures of $1.6B/year

http://www.circleid.com/posts/20101021googles_spending_spree_24_million_servers_and_counting/

• “According to Microsoft research chief Rick Rashid, around 20 percent of all the servers sold around the world each year are now being bought by a small handful of internet companies - he named Microsoft, Google, Yahoo and Amazon.”
Google data centers

• If in a non-fault-tolerant system with 1000 nodes, each node has 99.9% uptime, what is the uptime of the system?

• Answer: 63%
Distributed indexing

- Maintain a *master* machine directing the indexing job – considered “safe”.
- Break up indexing into sets of (parallel) tasks.
- Master machine assigns each task to an idle machine from a pool.
Parallel tasks

• We will use two sets of parallel tasks
 – Parsers
 – Inverters
• Break the input document corpus into *splits*
• Each split is a subset of documents
Parsers

- Master assigns a split to an idle parser machine
- Parser reads a document at a time and emits (term, doc) pairs
- Parser writes pairs into j partitions
- Each partition is for a range of terms’ first letters
 - (e.g., a-f, g-p, q-z) – here j=3.
Inverters

• An inverter collects all (term,doc) pairs (= postings) for one term-partition.

• Sorts and writes to postings lists

• Important: Each partition is small enough such that this sort can be done on a single machine
 – so in practice we’d use large j (many partitions)
 e.g., $al-aq$ rather than $a-j$
MapReduce

• The index construction algorithm we just described is an instance of MapReduce
 – a robust and conceptually simple framework for distributed computing [Dean and Ghemawat 2004]
 – Handles the “distributed” part

• The Google indexing system (ca. 2002) consists of a number of phases, each until very recently implemented in MapReduce.
Schema for index construction in MapReduce

- **Schema of map and reduce functions**
 - **map**: input \rightarrow list($<k, v>$) \hspace{1cm} **reduce**: (k, list(v)) \rightarrow output

- **Instantiation of the schema for index construction**
 - **map**: web collection \rightarrow list(termID, docID)
 - **reduce**: ($<\text{termID}_1$, list(docID)>, $<\text{termID}_2$, list(docID)>, ...) \rightarrow (postings list1, postings list2, ...)
MapReduce Example for Index Construction

• **map:**

\[d2 : C \text{ died.} \quad d1 : C \text{ came, C c'ed.} \]
\[\rightarrow \]
\[<C,d2>, <\text{died},d2>, <C,d1>, <\text{came},d1>, <C,d1>, <\text{c'ed},d1> \]

• **reduce:**

\[(<C,(d2,d1,d1)>, <\text{c'ed},(d1)>, <\text{came},(d1)>, <\text{died},(d2)>) \]
\[\rightarrow \]
\[<C,(d1:2,d2:1)>, <\text{c'ed},(d1:1)>, <\text{came},(d1:1)>, \]
\[<\text{died},(d2:1)>, \]

In key-sorted order.
Gee, it’s easy

• You write two methods:
 – map:
 takes a data object and emits (key, value) pairs
 – reduce:
 takes (key, value) pairs for one key and merges them

• You specify:
 – A partition function for reduce (which keys go where)
 – Parameters M (number of map tasks) and R (number of reduce tasks – same as j)
MapReduce Code Example

• Word Counting
 – In a set of a million documents, how often does each word appear?
 • **Map**: for a given doc, emit \(<word, 1> \) for each word that appears
 • **Reduce**: Output sum
// User’s map function
class WordCounter : public Mapper {
public:
 virtual void Map(const MapInput& input) {
 const string& text = input.value();
 const int n = text.size();
 for (int i = 0; i < n;) {
 // Skip past leading whitespace
 while ((i < n) && isspace(text[i]))
 i++;

 // Find word end
 int start = i;
 while ((i < n) && !isspace(text[i]))
 i++;
 if (start < i)
 Emit(text.substr(start, i-start),"1");
 }
 }
};
REGISTER_MAPPER(WordCounter);

[Dean and Ghemawat, 2004]
// User’s reduce function
class Adder : public Reducer {
 virtual void Reduce(ReduceInput* input) {
 // Iterate over all entries with the
 // same key and add the values
 int64 value = 0;
 while (!input->done()) {
 value += StringToInt(input->value());
 input->NextValue();
 }

 // Emit sum for input->key()
 Emit(IntToString(value));
 }
};
REGISTER_REDUCTER(Adder);

[Dean and Ghemawat, 2004]
Fun with MapReduce (1 of 4)

• Distributed grep
 – In a set of files, which lines include the word **arachnocentric**?
 • **Map**: scan text and output matching lines
 • **Reduce**: Copy the input
Fun with MapReduce (2 of 4)

• Monte Carlo simulation
 – E.g., Given computer players of backgammon A and B, how often will A beat B?
 • Map: play a game and emit <A, 1> or <B, 1> based on who wins
 • Reduce: Sum
 – post-processing: compute the ratio
Fun with MapReduce (3 of 4)

• Boolean Satisfiability
 – Given a boolean formula in 3-CNF, e.g.:
 \[(x_1 \lor -x_3 \lor x_7) \land (x_4 \lor x_5 \lor -x_6) \land \ldots\]
 How many distinct assignments to variables (i.e. \(x_i = \text{true} \mid \text{false}\)) make the formula true?
 – Create \(M = 2^k\) splits, one for each assignment
 • **Map**: Output \(<\text{whatever}, 1>\) *iff* the assignment makes the formula true
 • **Reduce**: Sum
Fun with MapReduce (4 of 4)

• Link Graph Index
 – Build an index to answer “which pages link to me” queries (i.e. Google’s link: operator)
 • Map: For document d_1, output $<dj, d_1>$ for all $<a \text{ href } =dj>$ tags therein
 • Reduce: Sort by values into posting lists
 – Partition function (which map keys are grouped together)
 • Sorted, e.g. ranges of domains (www.aa*-www.ai*)
Today’s Outline

• Index compression
• Distributed Indexing
 – MapReduce

• **Distributed Searching**
Distributed Searching

• We described indexing into a *term-partitioned* structure
 – Each machine handles some fraction of terms (e.g. *al-aq*)

• Another possibility:
 – *Document-partitioned*: one machine handles a subset of documents
Back to MapReduce

• How do we change our implementation to be document-partitioned?
• One possibility:
 – **map**: output `<doc-group | word-id, docID>`
 – **reduce**: sum and output posting list as before
 – **partition function**: by doc-group
Next Time(s)

• Web Crawlers, Link Analysis, Information Extraction