Basics of Probability

Lecture 1

Doug Downey, Northwestern EECS 474

Events

• Event space Ω

- E.g. for dice, $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Set of measurable events $S \subseteq 2^{\Omega}$

• E.g., α = event we roll an even number = {2, 4, 6} \in S

- S must:
 - \blacktriangleright Contain the empty event \varnothing and the trivial event Ω
 - Be closed under union & complement

 $\Box \, \alpha, \beta \in \mathsf{S} \to \alpha \cup \beta \in \mathsf{S} \quad \text{ and } \quad \alpha \in \mathsf{S} \to \, \Omega \text{ - } \alpha \in \mathsf{S}$

Probability Distributions

- A probability distribution P over (Ω, S) is a mapping from S to real values such that:
 - I. $P(\alpha) \ge 0 \quad \forall \alpha \in S$ Sidenote I st and 3rd axioms2. $P(\Omega) = I$ ensure P is a measure3. $\alpha, \beta \in S \land \alpha \cap \beta = \emptyset \rightarrow P(\alpha \cup \beta) = P(\alpha) + P(\beta)$

Probability Distributions

Can visualize probability as fraction of area

Probability: Interpretations & Motivation

Interpretations: Frequentist vs. Bayesian

• Why use probability for subjective beliefs?

- Beliefs that violate the axioms can lead to bad decisions regardless of the outcome [de Finetti, 1931]
- Example: P(A) = 0.6, P(not A) = 0.8 ?
- Example: P(A) > P(B) and P(B) > P(A) ?

• A random variable is a function from Ω to a value

- A partition of the event space Ω
- A short-hand for referring to *attributes* of events

Examples

- $\Omega = \{1, 2, 3, 4, 5, 6\}$ → = Val(DieRollEven)DieRollEven $\in \{true, false\}$
- Ω = {all possible hmwk/exam grade combinations}
 FinalGrade ∈ {a, b, c}

Joint Distributions

Þ

Grade	Interest	Course load	P(G, I, C)
а	high	full-time	0.10
а	high	part-time	0.08
а	low	full-time	0.03
а	low	part-time	0.04
b	high	full-time	0.07
b	high	part-time	0.02
b	low	full-time	0.12
b	low	part-time	0.16
С	high	full-time	0.01
С	high	part-time	0.02
С	low	full-time	0.20
С	low	part-time	0.15

Conditioning!

Grade	Interest	Course load	P(G, I, C)
а	high	full-time	0.10
â	high	part-time	0.08
а	low	full-time	0.03
â	low	part time	0.01
b	high	full-time	0.07
Ь	high	part-time	0.02
b	low	full-time	0.12
b	low	part time	0.16
с	high	full-time	0.01
c	high	part time	0.02
С	low	full-time	0.20
e	low	part-time	0.15

Conditioning!

Grade	Interest	Course load	P(G, I, C)	
а	high	full-time	0.10	/ 0.53
а	low	full-time	0.03	/ 0.53
b	high	full-time	0.07	/ 0.53
b	low	full-time	0.12	/ 0.53
с	high	full-time	0.01	/ 0.53
С	low	full-time	0.20	/ 0.53

0.53

Conditioning!

Þ

Grade	Interest	Course load	P(G, I C=f)
а	high	full-time	0.19
а	low	full-time	0.06
b	high	full-time	0.13
b	low	full-time	0.23
с	high	full-time	0.02
С	low	full-time	0.38

1.0

P(Grade = a | Interest = high) = 0.6

- the probability of getting an A given only Interest = high, and nothing else.
 - If we know Motivation = high or OtherInterests = many, the probability of an A changes even given high Interest

Formal Definition:

$$\mathsf{P}(\alpha \mid \beta) = \mathsf{P}(\alpha, \beta) / \mathsf{P}(\beta)$$

• When $P(\beta) > 0$

- Also:
 - ▶ P(A | B, C) = P(A, B, C) / P(B, C)
- More generally:
 - ▶ P(A | B) = P(A, B) / P(B)
 - (Boldface indicates vectors of variables)
- P(Grade = a | Grade = a, Interest = high) ?

Grade	Interest	Course load	P(G, I, C)
а	high	full-time	0.10
а	high	part-time	0.08
а	low	full-time	0.03
а	low	part-time	0.04
b	high	full-time	0.07
b	high	part-time	0.02
b	low	full-time	0.12
b	low	part-time	0.16
С	high	full-time	0.01
С	high	part-time	0.02
С	low	full-time	0.20
С	low	part-time	0.15

Grade	Interest	Course load	P(G, I, C)
а	high	*	0.10
а	high	*	0.08
а	low	*	0.03
а	low	*	0.04
b	high	*	0.07
b	high	*	0.02
b	low	*	0.12
b	low	*	0.16
С	high	*	0.01
С	high	*	0.02
С	low	*	0.20
с	low	*	0.15

Grade	Interest	Course load	P(G, I)
а	high	*	0.18
а	low	*	0.07
b	high	*	0.09
b	low	*	0.28
С	high	*	0.03
С	low	*	0.35

Grade	Interest	P(G, I)
а	high	0.18
а	low	0.07
b	high	0.09
b	low	0.28
С	high	0.03
С	low	0.35

1.0

$$P(X) = \sum_{y \in Val(Y)} P(X, Y = y)$$

Continuous Random Variables

For continuous r.v. X, specify a density p(x), such that:

E.g.,
$$P(r \le X \le s) = \int_{x=r}^{s} p(x) dx$$
$$p(x) = \begin{cases} \frac{1}{b-a} & b \ge x \ge a \\ 0 & \text{otherwise} \end{cases}$$

Uniform Continuous Density

Gaussian Density

Joint Distribution

		Interest		
		low	high	
Grade	a	0.07	0.18	
	b	0.28	0.09	
	с	0.35	0.03	

Joint Distribution specified with $2^*3 - 1 = 5$ values

		Interest		
		low	high	
Grade	a	0.07	0.18	
	b	0.28	0.09	
	с	0.35	0.03	

 $P(Grade = a \mid Interest = high) ?$ P(Grade = a, Interest = high) = 0.18 P(Interest = high) = 0.18 + 0.09 + 0.03 = 0.30 $=> P(Grade = a \mid Interest = high) = 0.18/0.30 = 0.6$

		Interest		
		low	high	
Grade	a	0.07	0.18	
	b	0.28	0.09	
	с	0.35	0.03	

P(Interest	Grade =	a)?
------------	---------	-----

D

Interest		
low	high	
0.28	0.72	

		Interest	
		low	high
Grade	a	0.28	0.72
	b	0.76	0.24
	с	0.92	0.08

P(Interest | Grade)?

D

Actually three separate distributions, one for each *Grade* value (has three independent parameters total)

Chain Rule

$$P(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n P(X_i = x_i \mid X_{i-1} = x_{i-1}, \dots, X_1 = x_1)$$

 $\blacktriangleright P(A, B) = P(A \mid B)P(B)$

Þ

- P(A | B = b) is a single distribution, like P(A)
- P(A | B) is not a single distribution
 a set of |Val(B)| distributions

- Any statement true for arbitrary distributions is also true if you condition on a new r.v.
 - P(A, B) = P(A | B)P(B)? (chain rule)
 Then also P(A, B | C) = P(A | B, C) P(B | C)
- Likewise, any statement true for arbitrary distributions is also true if you replace an r.v. with two/more new r.v.s
 - P(A | B) = P(A, B) / P(B) ? (def. of cond. Prob)
 - $P(A \mid C, D) = P(A, C, D) / P(C, D) \text{ or } P(A \mid B) = P(A, B) / P(B)$

Independence

- ▶ $P(Rain | Cloudy) \neq P(Rain)$
 - But: P(FairDie=6 | PreviousRoll=6) = P(FairDie=6)
- We say A and B are independent iff

 $\mathsf{P}(\mathsf{A} \mid \mathsf{B}) = \mathsf{P}(\mathsf{A})$

- Logically equivalent to P(A, B) = P(A)*P(B)
- Denoted $A \perp B$

Conditional Independence (1 of 2)

A and B are conditionally independent given C iff P(A | B, C) = P(A | C)

- Equivalent to P(A, B | C) = P(A | C) P(B | C)
- Denoted (A \perp B | C)

Conditional Independence (2 of 2)

Example: university admissions

- Val(GetIntoX) = {yes, no, wait}
- Val(Application) = {good, bad}

3*3*2*2= 36 Parameters

P(GetIntoNU | GetIntoUIUC, GetIntoStanford, Application)

P(GetIntoNU | Application) 2*2= 4 Parameters

Properties of Conditional Independence

- Decomposition
 - $(\mathbf{X} \perp \mathbf{Y}, \mathbf{W} \mid \mathbf{Z}) \Longrightarrow (\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$
- Weak Union
 - $(X \perp Y, W \mid Z) \Longrightarrow (X \perp Y \mid Z, W)$
- Contraction
 - $(X \perp W \mid Z, Y) \& (X \perp Y \mid Z) \Longrightarrow (X \perp Y, W \mid Z)$

Expectation

Discrete

$$E_P[X] = \sum_x x P(x)$$

Continuous

D

$$E_P[X] = \int x \, p(x) \, dx$$

• E.g., *E*[FairDie]=3.5

Expectation is Linear

$$\begin{bmatrix} E_P[X+Y] \\ = \sum_{x,y} (x+y)P(x,y) \\
 = \sum_{x,y} x P(x,y) + \sum_{x,y} y P(x,y) \\
 = \sum_x x \sum_y P(x,y) + \sum_y y \sum_x P(x,y) \\
 = \sum_x x P(x) + \sum_y y P(y) = \boxed{E_P[X] + E_P[Y]}$$

Fun with Expectation

- **BALLMER**: For years, I used this one quite a bit. I'd ask people to pick a number between one and a hundred. You get it on the first guess, I give you five bucks. Takes you two guesses, I give you four. Three, two, one, zero. Then you pay me a buck, you pay me two. Do you want to play or not?
- **GATES**: And you're telling them if they're high or low?
- **BALLMER**: I tell you high, low on your guess. Do you want to play or not?
- **GATES**: And getting the right answer isn't the key thing, if the person can think about it in the right way.
- **BALLMER**: You want to see that people can think in a disciplined, rational way. Although I will admit that someone once wrote down that this has an expected value of negative 21 cents as soon as I finished talking. [Looks over at Gates, who's started to jot down numbers on a piece of paper.] Look he's working on the problem!

GATES: Just trying to get 21 cents, that's all.

http://www.newsweek.com/1997/06/22/how-we-did-it.html

What have we learned?

Probability – a calculus for dealing with uncertainty

- Built from small set of axioms (ignore at your peril)
- Joint Distribution P(A, B, C, ...)
 - Specifies probability of all combinations of r.v.s
- Conditional Probability P(A | B)
 - Specifies probability of A=a given B=b
- Conditional Independence
 - Can radically reduce number of model parameters
- Expectation
- Next time: Bayes' Rule, Statistical Estimation