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Events

 Event space 

 E.g. for dice,  = {1, 2, 3, 4, 5, 6}

 Set of measurable events S  2

 E.g.,

 = event we roll an even number = {2, 4, 6}  S

 S must:

 Contain the empty event  and the trivial event 

 Be closed under union & complement

,   S      S and       S   -   S



Probability Distributions

 A probability distribution P over (, S) is a mapping 

from S to real values such that:

1. P()  0  S 

2. P() = 1

3. ,   S      =   P(   ) = P() + P( )

 



Sidenote – 1st and 3rd axioms 

ensure P is a measure



Probability Distributions

Can visualize probability as fraction of area

 





Probability: Interpretations & Motivation

 Interpretations: Frequentist vs. Bayesian 

 Why use probability for subjective beliefs?

 Beliefs that violate the axioms can lead to bad decisions 

regardless of the outcome [de Finetti, 1931]

 Example: P(A) = 0.6, P(not A) = 0.8 ?

 Example: P(A) > P(B) and P(B) > P(A) ?



Random Variables

 A random variable is a function from  to a value

 A partition of the event space 

 A short-hand for referring to attributes of events

 Examples

  = {1, 2, 3, 4, 5, 6}

DieRollEven  {true, false} 

  = {all possible hmwk/exam grade combinations}

FinalGrade  {a, b, c}

= Val(DieRollEven)



Joint Distributions

Grade Interest Course load P(G, I, C)

a high full-time 0.10

a high part-time 0.08

a low full-time 0.03

a low part-time 0.04

b high full-time 0.07

b high part-time 0.02

b low full-time 0.12

b low part-time 0.16

c high full-time 0.01

c high part-time 0.02

c low full-time 0.20

c low part-time 0.15



Conditioning!

Grade Interest Course load P(G, I, C)

a high full-time 0.10

a high part-time 0.08

a low full-time 0.03

a low part-time 0.04

b high full-time 0.07

b high part-time 0.02

b low full-time 0.12

b low part-time 0.16

c high full-time 0.01

c high part-time 0.02

c low full-time 0.20

c low part-time 0.15



Conditioning!

Grade Interest Course load P(G, I, C)

a high full-time 0.10

a low full-time 0.03

b high full-time 0.07

b low full-time 0.12

c high full-time 0.01

c low full-time 0.20

0.53

/ 0.53

/ 0.53

/ 0.53

/ 0.53

/ 0.53

/ 0.53



Conditioning!

Grade Interest Course load

a high full-time

a low full-time

b high full-time

b low full-time

c high full-time

c low full-time

1.0

P(G, I|C=f)

0.19

0.06

0.13

0.23

0.02

0.38



Conditional Probability

 P(Grade = a | Interest = high) = 0.6 

 the probability of getting an A given only Interest = high, and 

nothing else.

 If we know Motivation = high or OtherInterests = many, the probability 

of an A changes even given high Interest

 Formal Definition: 

 P( |  ) = P( ,  ) / P( )

 When P( ) > 0



Conditional Probability

 Also:

 P(A | B, C) = P(A, B, C) / P(B, C)

 More generally:

 P(A | B) = P(A, B) / P(B)

 (Boldface indicates vectors of variables)

 P(Grade = a | Grade = a, Interest = high) ?



Marginalization

Grade Interest Course load P(G, I, C)

a high full-time 0.10

a high part-time 0.08

a low full-time 0.03

a low part-time 0.04

b high full-time 0.07

b high part-time 0.02

b low full-time 0.12

b low part-time 0.16

c high full-time 0.01

c high part-time 0.02

c low full-time 0.20

c low part-time 0.15



Marginalization

Grade Interest Course load P(G, I, C)

a high * 0.10

a high * 0.08

a low * 0.03

a low * 0.04

b high * 0.07

b high * 0.02

b low * 0.12

b low * 0.16

c high * 0.01

c high * 0.02

c low * 0.20

c low * 0.15



Marginalization

Grade Interest Course load P(G, I)

a high * 0.18

a low * 0.07

b high * 0.09

b low * 0.28

c high * 0.03

c low * 0.35



Marginalization

Grade Interest P(G, I)

a high 0.18

a low 0.07

b high 0.09

b low 0.28

c high 0.03

c low 0.35

1.0



Marginalization

𝑃 𝑋 = ෍

𝑦∈𝑉𝑎𝑙(𝑌)

𝑃(𝑋, 𝑌 = 𝑦)



Continuous Random Variables

 For continuous r.v. X, specify a density p(x), such that:

E.g.,    




s

rx

dxxpsXrP

 










otherwise0

1
axb

abxp



Uniform Continuous Density

 










otherwise0

1
axb

abxp



Gaussian Density

 p(x) = 



Joint Distribution

Interest

low high

Grade

a 0.07 0.18

b 0.28 0.09

c 0.35 0.03

Joint Distribution specified with 2*3 – 1 = 5 values



Conditional Probability

Interest

low high

Grade

a 0.07 0.18

b 0.28 0.09

c 0.35 0.03

P(Grade = a | Interest = high) ?

P(Grade = a, Interest = high) = 0.18

P(Interest = high) = 0.18+0.09+0.03 = 0.30

=> P(Grade = a | Interest = high) = 0.18/0.30 = 0.6



Conditional Probability

Interest

low high

Grade

a 0.07 0.18

b 0.28 0.09

c 0.35 0.03

P(Interest | Grade = a)? Interest

low high

0.28 0.72



Interest

low high

Grade

a 0.07 0.18

b 0.28 0.09

c 0.35 0.03

Interest

low high

Grade

a 0.28 0.72

b 0.76 0.24

c 0.92 0.08

Conditional Probability

P(Interest | Grade)?

Actually three separate distributions, one for 

each Grade value 

(has three independent parameters total)



Chain Rule

 E.g., P(Grade=b, Int. = high) 

= P(Grade=b | Int.= high)P(Int. = high)

 Can be used for distributions…

 P(A, B) = P(A | B)P(B)



Handy Rules for Cond. Probability (1 of 2)

 P(A | B = b) is a single distribution, like P(A)

 P(A | B) is not a single distribution

 a set of |Val(B)| distributions



Handy Rules for Cond. Probability (2 of 2)

 Any statement true for arbitrary distributions is also true 

if you condition on a new r.v.

 P(A , B) = P(A | B)P(B)?   (chain rule)

Then also P(A, B | C) = P(A | B, C) P(B | C)

 Likewise, any statement true for arbitrary distributions is 

also true if you replace an r.v. with two/more new r.v.s

 P(A | B) = P(A, B) / P(B) ? (def. of cond. Prob)

 P(A | C, D) = P(A, C, D) / P(C, D) or P(A | B) = P(A, B) / P(B)



Independence

 P(Rain | Cloudy) ≠ P(Rain)

 But:  P(FairDie=6 | PreviousRoll=6) = P(FairDie=6)

 We say A and B are independent iff

P(A | B) = P(A)

 Logically equivalent to P(A, B) = P(A)*P(B)

 Denoted A  B



Conditional Independence (1 of 2)

 A and B are conditionally independent given C iff

P(A | B, C) = P(A | C)

 Equivalent to P(A, B | C) = P(A | C) P (B | C)

 Denoted (A  B | C)



Conditional Independence (2 of 2)

 Example: university admissions

 Val(GetIntoX) = {yes, no, wait}

 Val(Application) = {good, bad}

P(GetIntoNU | GetIntoUIUC, GetIntoStanford, Application)

=

P(GetIntoNU | Application)

3*3*2*2= 36 Parameters

2*2= 4 Parameters



Properties of Conditional Independence

 Decomposition

 (X  Y, W | Z) => (X  Y| Z)

 Weak Union

 (X  Y, W | Z) => (X  Y| Z, W)

 Contraction

 (X  W | Z, Y) & (X  Y| Z) => (X  Y, W | Z)



Expectation

 Discrete

𝑬𝑷 𝑿 =෍

𝒙

𝒙 𝑷(𝒙)

 Continuous

𝑬𝑷 𝑿 = ∫ 𝒙 𝒑 𝒙 𝒅𝒙

 E.g., E[FairDie]=3.5



Expectation is Linear

𝑬𝑷 𝑿+ 𝒀 =෍

𝒙,𝒚

𝒙 + 𝒚 𝑷 𝒙, 𝒚

=෍

𝒙,𝒚

𝒙 𝑷 𝒙, 𝒚 +෍

𝒙,𝒚

𝒚 𝑷 𝒙, 𝒚

=෍

𝒙

𝒙෍

𝒚

𝑷 𝒙, 𝒚 +෍

𝒚

𝒚෍

𝒙

𝑷 𝒙, 𝒚

=෍

𝒙

𝒙 𝑷 𝒙 +෍

𝒚

𝒚 𝑷 𝒚 = 𝑬𝑷[𝑿] + 𝑬𝑷[𝒀]



Fun with Expectation

BALLMER: For years, I used this one quite a bit. I'd ask people to pick a 

number between one and a hundred. You get it on the first guess, I give you 

five bucks. Takes you two guesses, I give you four. Three, two, one, zero. Then 

you pay me a buck, you pay me two. Do you want to play or not?

GATES: And you're telling them if they're high or low?

BALLMER: I tell you high, low on your guess. Do you want to play or not?

GATES: And getting the right answer isn't the key thing, if the person can 

think about it in the right way.

BALLMER: You want to see that people can think in a disciplined, rational 

way. Although I will admit that someone once wrote down that this has an 

expected value of negative 21 cents as soon as I finished talking. [Looks 

over at Gates, who's started to jot down numbers on a piece of paper.] 

Look he's working on the problem!

GATES: Just trying to get 21 cents, that's all.
 http://www.newsweek.com/1997/06/22/how-we-did-it.html

http://www.newsweek.com/1997/06/22/how-we-did-it.html


What have we learned?

 Probability – a calculus for dealing with uncertainty

 Built from small set of axioms (ignore at your peril)

 Joint Distribution P(A, B, C, …)

 Specifies probability of all combinations of r.v.s

 Conditional Probability P(A | B)

 Specifies probability of A=a given B=b

 Conditional Independence

 Can radically reduce number of model parameters

 Expectation

 Next time: Bayes’ Rule, Statistical Estimation


