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Events

 Event space 

 E.g. for dice,  = {1, 2, 3, 4, 5, 6}

 Set of measurable events S  2

 E.g.,

 = event we roll an even number = {2, 4, 6}  S

 S must:

 Contain the empty event  and the trivial event 

 Be closed under union & complement

,   S      S and       S   -   S



Probability Distributions

 A probability distribution P over (, S) is a mapping 

from S to real values such that:

1. P()  0  S 

2. P() = 1

3. ,   S      =   P(   ) = P() + P( )

 



Sidenote – 1st and 3rd axioms 

ensure P is a measure



Probability Distributions

Can visualize probability as fraction of area

 





Probability: Interpretations & Motivation

 Interpretations: Frequentist vs. Bayesian 

 Why use probability for subjective beliefs?

 Beliefs that violate the axioms can lead to bad decisions 

regardless of the outcome [de Finetti, 1931]

 Example: P(A) = 0.6, P(not A) = 0.8 ?

 Example: P(A) > P(B) and P(B) > P(A) ?



Random Variables

 A random variable is a function from  to a value

 A partition of the event space 

 A short-hand for referring to attributes of events

 Examples

  = {1, 2, 3, 4, 5, 6}

DieRollEven  {true, false} 

  = {all possible hmwk/exam grade combinations}

FinalGrade  {a, b, c}

= Val(DieRollEven)



Joint Distributions

Grade Interest Course load P(G, I, C)

a high full-time 0.10

a high part-time 0.08

a low full-time 0.03

a low part-time 0.04

b high full-time 0.07

b high part-time 0.02

b low full-time 0.12

b low part-time 0.16

c high full-time 0.01

c high part-time 0.02

c low full-time 0.20

c low part-time 0.15



Conditioning!

Grade Interest Course load P(G, I, C)

a high full-time 0.10

a high part-time 0.08

a low full-time 0.03

a low part-time 0.04

b high full-time 0.07

b high part-time 0.02

b low full-time 0.12

b low part-time 0.16

c high full-time 0.01

c high part-time 0.02

c low full-time 0.20

c low part-time 0.15



Conditioning!

Grade Interest Course load P(G, I, C)

a high full-time 0.10

a low full-time 0.03

b high full-time 0.07

b low full-time 0.12

c high full-time 0.01

c low full-time 0.20

0.53

/ 0.53

/ 0.53

/ 0.53

/ 0.53

/ 0.53

/ 0.53



Conditioning!

Grade Interest Course load

a high full-time

a low full-time

b high full-time

b low full-time

c high full-time

c low full-time

1.0

P(G, I|C=f)

0.19

0.06

0.13

0.23

0.02

0.38



Conditional Probability

 P(Grade = a | Interest = high) = 0.6 

 the probability of getting an A given only Interest = high, and 

nothing else.

 If we know Motivation = high or OtherInterests = many, the probability 

of an A changes even given high Interest

 Formal Definition: 

 P( |  ) = P( ,  ) / P( )

 When P( ) > 0



Conditional Probability

 Also:

 P(A | B, C) = P(A, B, C) / P(B, C)

 More generally:

 P(A | B) = P(A, B) / P(B)

 (Boldface indicates vectors of variables)

 P(Grade = a | Grade = a, Interest = high) ?



Marginalization

Grade Interest Course load P(G, I, C)

a high full-time 0.10

a high part-time 0.08

a low full-time 0.03

a low part-time 0.04

b high full-time 0.07

b high part-time 0.02

b low full-time 0.12

b low part-time 0.16

c high full-time 0.01

c high part-time 0.02

c low full-time 0.20

c low part-time 0.15



Marginalization

Grade Interest Course load P(G, I, C)

a high * 0.10

a high * 0.08

a low * 0.03

a low * 0.04

b high * 0.07

b high * 0.02

b low * 0.12

b low * 0.16

c high * 0.01

c high * 0.02

c low * 0.20

c low * 0.15



Marginalization

Grade Interest Course load P(G, I)

a high * 0.18

a low * 0.07

b high * 0.09

b low * 0.28

c high * 0.03

c low * 0.35



Marginalization

Grade Interest P(G, I)

a high 0.18

a low 0.07

b high 0.09

b low 0.28

c high 0.03

c low 0.35

1.0



Marginalization

𝑃 𝑋 = 

𝑦∈𝑉𝑎𝑙(𝑌)

𝑃(𝑋, 𝑌 = 𝑦)



Continuous Random Variables

 For continuous r.v. X, specify a density p(x), such that:

E.g.,    
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Uniform Continuous Density

 










otherwise0
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Gaussian Density

 p(x) = 



Joint Distribution

Interest

low high

Grade

a 0.07 0.18

b 0.28 0.09

c 0.35 0.03

Joint Distribution specified with 2*3 – 1 = 5 values



Conditional Probability

Interest

low high

Grade

a 0.07 0.18

b 0.28 0.09

c 0.35 0.03

P(Grade = a | Interest = high) ?

P(Grade = a, Interest = high) = 0.18

P(Interest = high) = 0.18+0.09+0.03 = 0.30

=> P(Grade = a | Interest = high) = 0.18/0.30 = 0.6



Conditional Probability

Interest

low high

Grade

a 0.07 0.18

b 0.28 0.09

c 0.35 0.03

P(Interest | Grade = a)? Interest

low high

0.28 0.72



Interest

low high

Grade

a 0.07 0.18

b 0.28 0.09

c 0.35 0.03

Interest

low high

Grade

a 0.28 0.72

b 0.76 0.24

c 0.92 0.08

Conditional Probability

P(Interest | Grade)?

Actually three separate distributions, one for 

each Grade value 

(has three independent parameters total)



Chain Rule

 E.g., P(Grade=b, Int. = high) 

= P(Grade=b | Int.= high)P(Int. = high)

 Can be used for distributions…

 P(A, B) = P(A | B)P(B)



Handy Rules for Cond. Probability (1 of 2)

 P(A | B = b) is a single distribution, like P(A)

 P(A | B) is not a single distribution

 a set of |Val(B)| distributions



Handy Rules for Cond. Probability (2 of 2)

 Any statement true for arbitrary distributions is also true 

if you condition on a new r.v.

 P(A , B) = P(A | B)P(B)?   (chain rule)

Then also P(A, B | C) = P(A | B, C) P(B | C)

 Likewise, any statement true for arbitrary distributions is 

also true if you replace an r.v. with two/more new r.v.s

 P(A | B) = P(A, B) / P(B) ? (def. of cond. Prob)

 P(A | C, D) = P(A, C, D) / P(C, D) or P(A | B) = P(A, B) / P(B)



Independence

 P(Rain | Cloudy) ≠ P(Rain)

 But:  P(FairDie=6 | PreviousRoll=6) = P(FairDie=6)

 We say A and B are independent iff

P(A | B) = P(A)

 Logically equivalent to P(A, B) = P(A)*P(B)

 Denoted A  B



Conditional Independence (1 of 2)

 A and B are conditionally independent given C iff

P(A | B, C) = P(A | C)

 Equivalent to P(A, B | C) = P(A | C) P (B | C)

 Denoted (A  B | C)



Conditional Independence (2 of 2)

 Example: university admissions

 Val(GetIntoX) = {yes, no, wait}

 Val(Application) = {good, bad}

P(GetIntoNU | GetIntoUIUC, GetIntoStanford, Application)

=

P(GetIntoNU | Application)

3*3*2*2= 36 Parameters

2*2= 4 Parameters



Properties of Conditional Independence

 Decomposition

 (X  Y, W | Z) => (X  Y| Z)

 Weak Union

 (X  Y, W | Z) => (X  Y| Z, W)

 Contraction

 (X  W | Z, Y) & (X  Y| Z) => (X  Y, W | Z)



Expectation

 Discrete

𝑬𝑷 𝑿 =

𝒙

𝒙 𝑷(𝒙)

 Continuous

𝑬𝑷 𝑿 = ∫ 𝒙 𝒑 𝒙 𝒅𝒙

 E.g., E[FairDie]=3.5



Expectation is Linear

𝑬𝑷 𝑿+ 𝒀 =

𝒙,𝒚

𝒙 + 𝒚 𝑷 𝒙, 𝒚

=

𝒙,𝒚

𝒙 𝑷 𝒙, 𝒚 +

𝒙,𝒚

𝒚 𝑷 𝒙, 𝒚

=

𝒙

𝒙

𝒚

𝑷 𝒙, 𝒚 +

𝒚

𝒚

𝒙

𝑷 𝒙, 𝒚

=

𝒙

𝒙 𝑷 𝒙 +

𝒚

𝒚 𝑷 𝒚 = 𝑬𝑷[𝑿] + 𝑬𝑷[𝒀]



Fun with Expectation

BALLMER: For years, I used this one quite a bit. I'd ask people to pick a 

number between one and a hundred. You get it on the first guess, I give you 

five bucks. Takes you two guesses, I give you four. Three, two, one, zero. Then 

you pay me a buck, you pay me two. Do you want to play or not?

GATES: And you're telling them if they're high or low?

BALLMER: I tell you high, low on your guess. Do you want to play or not?

GATES: And getting the right answer isn't the key thing, if the person can 

think about it in the right way.

BALLMER: You want to see that people can think in a disciplined, rational 

way. Although I will admit that someone once wrote down that this has an 

expected value of negative 21 cents as soon as I finished talking. [Looks 

over at Gates, who's started to jot down numbers on a piece of paper.] 

Look he's working on the problem!

GATES: Just trying to get 21 cents, that's all.
 http://www.newsweek.com/1997/06/22/how-we-did-it.html

http://www.newsweek.com/1997/06/22/how-we-did-it.html


What have we learned?

 Probability – a calculus for dealing with uncertainty

 Built from small set of axioms (ignore at your peril)

 Joint Distribution P(A, B, C, …)

 Specifies probability of all combinations of r.v.s

 Conditional Probability P(A | B)

 Specifies probability of A=a given B=b

 Conditional Independence

 Can radically reduce number of model parameters

 Expectation

 Next time: Bayes’ Rule, Statistical Estimation


