Learning in Graphical Models

* Problem Dimensions

— Model

* Bayes Nets
* Markov Nets

— Structure

e Known

* Unknown (structure learning)

— Data

 Complete
* Incomplete (missing values or hidden variables)



Outline

* Objective
* Simple example
* Complex example



Objective

* Learning with missing/unobservable data

EBAJ
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1011
00O00O

Maximum likelihood

http://www.auto .org/tutorials/



Objective

* Learning with missing/unobservable data

EBAJ

117?21
10?1
00?0

Optimize what?

http://www.auto .org/tutorials/



Outline

* Simple example



Simple example

Let events be “grades in a class”

w; = Gets an A P(A) = 4

w, =Getsa B P(B) = p

wy =Getsa C P(C) = 2u
w, = Getsa D P(D) = 2-3pu

(Note 0 =p<1/6)

Assume we want to estimate p from data. In a given class
there were

g é,g A B C D
' 14 & 9 10

c (Cs

d D's

What's the maximum likelihood estimate of p given a,b,c,d ?

Most slides from
http://www.autonlab.org/tutorials/



Maximize likelihood

PAA) =12 P(B)=pun P(C)=2u PD)="2-3u
P( gb,cd | p) = K(V2)Ap)A2n)(V2-3p)?
log P( g,0,¢d | u) =log K+ dlog 2 + blog u + dog 2p + dog (2-3u)

FOR MAX LIKE u, SET """'Lf'gp = ()
ou
dLogP _ b . 2¢c  3d _ 0
o uw 2u 1/2-3u
Gi lik b+c A B C D
JIIVES IMdX IIKE =
U 6(ﬁ+r:+a’) 14 6 9 10

Most slides from
http://www.autonlab.org/tutorials/



Same Problem with Hidden Information

REMEMBER
Someone tells us that MA) = T
Number of High grades (A's + B's) = A P(B) = 1
Number of C's =C P(C) = 2u
Number of D’s =d P(D) = 2-3p

What is the max. like estimate of p now?

Hidden

Observable

Most slides from
http://www.autonlab.org/tutorials/



Same Problem with Hidden Information

FLEMEMEEFL |
Someone tells us that BA) = 15
Number of High grades (A's + B's) = /A P(B) =
Number of C's =C P(C) = 2y
Number of D’s =d P(D) = ¥2-3
What is the max. like estimate of g now?
We can answer this question circularly:
MAXIMIZATION " "
If we know the [ values of aand b
. o b+c
we could compute the maximum likelihood U=
value of p 6(b+c+d)

Most slides from
http://www.autonlab.org/tutorials/



Same Problem with Hidden Information

Someone tells us that

Number of High grades (A's + B's) = /A
Number of C's =C
Number of D’s =d

What is the max. like estimate of g now?

We can answer this question circularly:

EXPECTATION

expected value of gand b

Since the ratio a:b should be the same as the ratio ¥z : u

MAXIMIZATION

If we know the [ values of aand b
we could compute the maximum likelihood
value of J under those expected values

Most slides from

http://www.autonlab.org/tutorials/

REMEMBER
P(A) = %
P(B) =
P(C) = 2u
P(D) = %-3

If we know the value of p we could compute the




EM for our example

We begin with a guess for p

We iterate between EXPECTATION and MAXIMALIZATION to
improve our estimates of p and a and b.

Define p(t) the estimate of p on the t'th iteration
b(t) the estimate of Hon t'th iteration

w(0) = initial guess

b(1)= = Efp | (o)
Y5+l
blt)+c
6(b(t)+c+d)
= max like est of p given b(¢)

u+1)=

Most slides from
http://www.autonlab.org/tutorials/

REMEMBER
P(A) = 1%
P(B) = p
P(C) = 2
P(D) = V2-3p




EM Convergence

e Convergence proof based on fact that Prob(data | u) must increase or
remain same between each iteration not osvious

e But it can never exceed 1  [osvious)
So it must therefore converge [oevious)

In our example, t u(t) b(t)
suppose we had 0l0 0
h = 128 > 1 [0.0833 2.857
C =
d = 10 2 | 0.0937 3.158
“(0) =0 3 10.0947 3.185
4 10.0948 3.187
5 10.0948 3.187
6 | 0.0948 3.187

Most slides from
http://www.autonlab.org/tutorials/



Generalization

X: observable data (score ={h, c, d})
Z: missing data (grade = {a, b})
9: model parameters to estimate ( U )

E: given ¢, compute the expectation of counts
of z

M: use z cP(X,z|¢) in E step, maximize the
likelihood with respect to ¢



Outline

* Complex example



Gaussian Mixtures

“I've got data from k classes. Each class produces
observations with a normal distribution and variance
02l . Standard simple multivariate gaussian
assumptions. I can tell you all the P(w)’s .”

"I need a maximum likelihood estimate of the p/s ."
“There’s just one thing. None of the data are labeled. I

have datapoints, but I don't know what class they’re
from (any of them!)



Gaussian Mixtures

=] Auton”s Grephice L=

neE T

— 02]: s

e Don’t know _,

— Data label R

e Objective
— estimate of the p,s

Most slides from
http://www.autonlab.org/tutorials/



The GMM assumption

« There are K components. The
'th component is called o,

« Component @;has an
associated mean vector y; L L

iy

Most slides from
http://www.autonlab.org/tutorials/



The GMM assumption

e There are k components. The
'th component is called o,

e Component o, has an / N
associated mean vector N 7
LN .

« Each component generates data |-" Mg\ "I /
from a Gaussian with mean y; \ F—
and covariance matrix o<l . 7,

Assume that each datapoint is | o M3
generated according to the |
following recipe:

Most slides from
http://www.autonlab.org/tutorials/



The GMM assumption

e There are k components. The
'th component is called o,

e Component »,has an 7 N\

associated mean vector .* Uy |

| ® {

| /

« Each component generates data \. /*
from a Gaussian with mean g, S~

and covariance matrix oI

Assume that each datapoint is
generated according to the
following recipe:

1. Pick a component at random.
Choose component i with
probability P(w,).

Most slides from
http://www.autonlab.org/tutorials/



The GMM assumption

e There are k components. The
'th component is called o,

« Component o, has an / AN

associated mean vector ; :* s

\ /

 Each component generates data \. ‘/f
from a Gaussian with mean g ~—

and covariance matrix oZI

Assume that each datapoint is
generated according to the
following recipe:

1. Pick a component at random.
Choose component i with
probability AP(w,).

2. Datapoint ~ N(u, o?I')

Most slides from
http://www.autonlab.org/tutorials/



The data generated

=
¥l
0B
B

0.4

0.2

Ll

p.2 0.4 0.k 0.8

Most slides from
http://www.autonlab.org/tutorials/




Computing the likelihood

Remember:
We have unlabeled data x; x, ... xq
We know there are k classes
We know P(w,) P(w,) P(ws) ... P(w,)
We don’t know g, M, .. B,

We can write P( data | p;.... 1)
= ]}(II"'IR|HI"'“.{-)

JCATRTY
o, o,

K E.‘-{]‘}(— l - (I.- - pj.FW}}(ﬂ'j.)
. 20 J

Il
L R e L
M- M-

Most slides from
http://www.autonlab.org/tutorials/



EM for GMMs

c

For Max likelthood we know P log Pr Db(data‘pl L _]: 0
O,

Some wild' n'crazy algebra turns this into : "For Max likelihood, for each j,

iP(--x,gul ),
ZP( SORTRNT

Thisis n nonlinear equations in p;s.”

M_I.l'

Most slides from
http://www.autonlab.org/tutorials/



EM for GMMs

c

For Max likelthood we know P log Pr nb(data‘pl L ): 0
O,

Some wild' n'crazy algebra turns this into : "For Max likelihood, for each j,

ZP(‘H X, )
Z:P(“"anprupk)

Thisis n nonlinear equations in py's.”
If, for each x; we knew that for each w, the prob that X; was in class w; is
P(wi|x,U;...x) Then... we would easily compute p,.

Cf we knew each y; then we could easily compute P(w;|x; Y;...4;) for eac@

and x;.

;=

Most slides from
http://www.autonlab.org/tutorials/



EM for GMMs

pi(t)is shorthand

Iterate. On the fth iteration let our estimates be for estimate of
- Flo, t'th
Jo = L 1(E), 1oAt) ... dt) D toraton
E-step Just evaluate
Compute "expected” classes of all datapoints for each class iGﬁ‘UﬁffE‘” at
" K
p(x, .2, P, 12,)  plxipr. 1, (0).0°1)p,(0)
P(u-*i. X, A ): ( ‘;L ) =—
X, |4, ‘ 2
p : Zp(xkbt‘.jﬂﬂj(f)ﬁg l)p_j(f)
M-step. j=1

Compute Max. like g given our data’s class membership distributions

Z P(wf

k

ZP(erxk:j‘r)
k

Ik:_)d-'?.)xk

u(e+1)=

Most slides from
http://www.autonlab.org/tutorials/



Gaussian
Mixture
Example:
Start

Advance apologies: in Black
and White this example will be
incomprehensible

Most slides from
http://www.autonlab.org/tutorials/



After first @
iteration °. {'

Most slides from
http://www.autonlab.org/tutorials/



After 2nd R
iteration '.

Most slides from
http://www.autonlab.org/tutorials/



After 3rd @ e® .
iteration . ® e

Most slides from
http://www.autonlab.org/tutorials/



After 4th
iteration

Most slides from
http://www.autonlab.org/tutorials/



After 5th 9 e
iteration 0.9

Most slides from
http://www.autonlab.org/tutorials/



After 6th @ e®®
|te ratlon . o=0. L5 \

Most slides from
http://www.autonlab.org/tutorials/



After 20th
iteration

Most slides from
http://www.autonlab.org/tutorials/



Final comments

* Deal with missing data/latent variables
 Maximize expected log likelihood
* Local maxima



Expectation-Maximization

* Previously

— Basics of EM
— Learning a mixture of Gaussians (k-means)

* Next:
— Short story justifying EM

e Slides based on lecture notes from Andrew Ng



http://see.stanford.edu/materials/aimlcs229/cs229-notes8.pdf

10,000 foot level EM

* Guess some parameters, then

— Use your parameters to get a distribution over
hidden variables

— Re-estimate the parameters as if your distribution
over hidden variables is correct

* Seems magical. When/why does this work?



Jensen’s Inequality

* For f convex, E[f(X)] >= fIE[X])

For P(X=a)=P(X=b)=%:

f(a)
E[{(X)]

t(b)
AELX])




Jensen’s Inequality

* For f convex, E[f(X)] >= fIE[X])

* (on board)



Maximizing likelihood

« x) = data, z') = hidden vars, 0= parameters

z(%)

B X 1‘) (1) )
- Z“ D A By

z(?)

p(a (7) (7). )
> ZZ()E hw NE0)

 This lower bound is easier to maximize, but
— What is Q? What good is maximizing a lower bound?




What do we use for Q?

* EM: Given a guess 6,4 for @, improve it

* |dea: choose Q such that our lower bound
equals the true log likelihood at 6, 4:

LL(Onew)

LLold

A
/ . o \ LL(Onew)
/i \'x.
/i \
/i -_ \
/o LLold + Q(©new) \
/ ' '
-
©old Onew



Ensure the bound is tight at 6,

* When does Jensen’s inequality hold exactly?



Ensure the bound is tight at 6,

* When does Jensen’s inequality hold exactly?
e Sufficient that

(1) (1) g
log p(a._ L 0)

T Qu(2W)

be constant with respect to z!)

* Thus, choose Q(z1) = p(z | x; @,,.)




Putting it together

Old 6

(E-step) For each i, set
Q@-{:’m) — p(zii}|flii}; ).

(M-step) Set
p(z®, 200): )

o () T
0 : Mgﬂ]&ﬁii}@l(, ) log

Qi(zW)



For exponential family

* E step:

— Use 6, to estimate expected sufficient statistics
over complete data

* M step

— Set 4.,, = ML parameters given sufficient statistics
e (Or MAP parameters)



EM in practice

 Local maxima

— Random re-starts, simulated annealing...

* Variants

— Hard EM: set Z to most likely value (e.g. k-means)

— Generalized EM: increase (not nec. maximize)
lower bound in each step

— Approximate E-step (e.g. sampling)



