Inference in Markov Networks

Doug Downey
Northwestern EECS 395/495 Fall 2014

Markov Network Inference

* P(x)=1I. ¢(x =211 ¢.(x)

Trivia
Knowledge
m_ ¢1(G TV) Trivia & (TV, K)
none Knowledge

good none 3.0 none weak
bad lots 3.0 lots weak 1.0
good lots 1.0 none strong 1.5

lots strong 3.0

Markov Network Inference

 P(Grades | TV=none)? Straightforward: enumerate,

then re-normalize
Trivia
Knowledge
m— Trivia H(TV, K)
none Knowledge

good none 3.0 none weak
bad lots 3.0 lots weak 1.0
good lots 1.0 none strong 1.5

lots strong 3.0

But...

 P(Grades)? Tougher.

Trivia
Knowledge

* Need to compute Z, requires summing over Trivia
Knowledge as well. Compare with Bayes Net:

Trivia
Knowledge

Inference in Markov Networks

* |[n general, we need to sum over the whole
network

A method for doing so is the junction-tree
algorithm

— As a side effect, it computes all the marginals

* P(Grades), P(TV), P(Trivia Knowledge)
* Key: can also compute these given evidence

— We often want to do this for Bayes Nets too

e Suggests a strategy: convert to Markov
Network, then run junction tree algorithm

Junction Tree Algorithm

* High-level Intuition: Computing marginals is
straightforward in a tree structure

* Consider a directed Bayes Net for example:

e :
<>

Junction Tree

* Inference of marginals is straightforward in a
tree

— Even if undirected, as we’ll see

* Basicidea:
— If Bayes Net, convert to Markov Net

— Convert Markov Net into a tree structure

e How?
Triangulate, Build Cliqgue Graph, Build Junction Tree

— Do Inference on Junction Tree

Convert to Markov Net

* Consider this Bayes Net conversion:

Giﬁ Géﬁ

e What are the factors of the Markov Net?

Junction Tree Outline

 |f Bayes Net, convert to Markov Net
 Convert Markov Net into Junction Tree

— Triangulate
— Build Clique Graph
— Build Junction Tree

* Do Inference using Junction Tree

Convert Markov Net into Junction
Tree

. Punchhne

G’G

9‘6

o [

e Details follow

Junction Tree Outline

 |f Bayes Net, convert to Markov Net

e Convert Markov Net into Junction Tree

— Triangulate
— Build Clique Graph
— Build Junction Tree

* Do Inference using Junction Tree

Triangulation => “Chordal” Graph

* Goal: Every cycle of length > 3 has a chord

o o
< <
H>—© = H—o
-0 Vel

« Why? Stay tuned.

Triangulation Algorithm

Repeat while there exists a cycle of length > 3 with no chord:
Add a chord (edge between two non-adjacent
vertices in such a cycle).

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (1 of 3)

It appears to be triangulated, but how can we be sure?

From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (2 of 3)

Input: Graph G with n nodes
Output: “Is G triangulated?”
Algorithm:
Choose any node, label it 1
fori=2ton
Find node with most labeled neighbors, label it i
if / has two non-adjacent labeled neighbors
return false
return true

Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure?

From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure?

From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure?

From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure?

From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure?

From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (3 of 3)

It appears to be triangulated, but how can we be sure?

From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Triangulation Checking (3 of 3)

No edge between nodes 5 and 6, both of which are parents of 7

From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Connect the two offending nodes

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Repeat Until Triangulation Check
Succeeds

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Junction Tree Outline

* |f Bayes Net, convert to Markov Net
e Convert Markov Net into Junction Tree

— Triangulate
— Build Clique Graph
— Build Junction Tree

* Do Inference using Junction Tree

Building Clique Graph H

* Create a node in H for each maximal clique in G
* Create edges in H between adjacent cliques in G

— Convenience: Label edges in H with nodes’ intersection

e
L D
o »
o [eco

B,C

Bigger Example

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Bigger Example — Cliqgue Graph

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Junction Tree Outline

* |f Bayes Net, convert to Markov Net
e Convert Markov Net into Junction Tree

— Triangulate
— Build Clique Graph
— Build Junction Tree

* Do Inference using Junction Tree

Build Junction Tree

* AlJunction Tree is a subgraph of the clique
graph that
— |Is a tree
— Contains all the nodes of the clique graph

— Satisfies the junction tree property

* For each pair of cliques U, V with intersection S, all
cliques on path between U and V contain S

Junction Tree Example

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Choose a Root

CS
267 15678 7.8
C4
6,8 C6
4.5,6.7 5,7,8,9
C9 y L
4,5,6
6,8,12 579
C3 1 0
{ 3,4,5,6] C7
345 ,7,9,10
C2] 9,10
2,3,4,5 C8
2,3 9,10,1

C1
1,2,3

Remember This?

* Goal: Every cycle of length > 3 has a chord

Can we always find a Junction Tree?

* Yes, for clique graphs of triangulated graphs
* Define “edge weight” on the clique graph to
be the size of the intersection

— Then a maximum-weight spanning tree is a
junction tree

Junction Tree

 |f Bayes Net, convert to Markov Net
* Convert Markov Net into Tree

— Triangulate
— Build Cligue Graph
— Build Junction Tree

Do Inference on Tree

Inference

* |Initialize cligue nodes

— Cligue node in H is a table assigning
values to its variable combinations

— Put each potential function (or CPT)
in G into exactly one node in H

— Combine by multiplying “pointwise”
(as in variable elimination)

Example

a —a
1.9 a —a
bl|A|.1|.9 —~C|A| .3 | .8
5.5
d|5ﬁd|5@ c
[T _ / e[] 6
_bl|.71.3
el e[€le
fID,E|.1 | 5] 4]38
~f|D,E| 9|.5].6].2

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Junction Tree with CPTs
e|C —¢|C

(CDE)

P(DIB)

cl -5

D

dlé]-B_'g—l-B /CD i, —C| .4 |.6
b . .
=+=1 (BCD) (DEF)
BC

P(E[C)

ad_| =0
€ el € [—¢]
@TBC fID,E|.1|.5].4]|.8
P(A’BP;C) _ ~fIDES[5[6]2
cclelt P(F|D,E)

a 0071003063027
—8162,648.018,072

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Junction Tree Algorithm

* |[ncorporate Evidence -- For each £ =¢
— Find one junction tree node containing £
— Zero out all cells with E# e

 Upward Pass (from leaves to root)

— Each leaf sends message to parent

* Message = |leaf’s table after summing out variables not
in parent

— Parent propagates message
* Multiplies in the child’s message, then repeats process

Junction Tree Algorithm

e Downward Pass

— Root sends child a message
 Divides its table by child’s message from upward pass
* Sums out variables not in child, and sends

— Child propagates the message

* After multiplying in parent’s message, child’s table is
the joint distribution over its variables

* Child continues the process (acts as root)

Upward Pass —assume no evidence

P(|D, E) e
P(C,D) d -d T
1241126 |d 1.0/ 1.0
e (CDE) df 1.0] 1.9

P(B,C)

b
-b

C

330,420 /I *\

- C

.169.651

.081.

099

(ABC)

(BCD) (DEP)

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Status After Upward Pass

P(C,D,E)

P(B,C,D) B
C =C
Q[—d
b|068.101}.260391 (CDE
.057.024 069030
Z CD
(BCD,
BC
(ABC) , ososdo5d
—8162,648018,072

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Downward Pass

d —d
C —=C €1.194(.231

1.0 [1.0 (CDE) ~€.260.315

Will have no I//CD DE\\I
effect - ignore @C_D) (DEF)
BC
(ABC)

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Status After Downward Pass

P(B,C,D)
C —C
O] — —d

_ b 057024069030
<

(BCD,

BC

(ABC)

—d

b 068101.260,391 (CDE

.0071.003.063.027

162,648 018072

~f175(130,139.063
P(D,E,F)

P(A,B,C)

* From David Page, UWisc, pages.cs.wisc.edu/~dpage/cs731/lecture5.ppt

Remember Junction Tree Property

* Alunction Tree is a subgraph of the clique
graph that

— |s a tree

— Con the nodes of the cliqu

— Satisfies the junction tree property

* For each pair of cliques U, V with intersection S, all
cliques on path between U and V contain S

Why a Tree?

* Consider the alternative — cycles:

C
[AIBICHC,D,E]

| B,C | D,E

D
[B,C,D]——[D,E,F,GJ

* Previous algorithm not applicable -- can’t
define upward, downward pass

Finishing touches

 We have joint distributions
— P(A, B, C), P(C, D, E), etc.
 Compute marginals by summing out

— Key: These sums are over small #s of variables

 |f evidence changes, we repeat forward-
backward pass

— BUT we don’t have to re-compute the junction
tree (= savings)

