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I-Maps, Perfect Maps, and I-Equivalence

 I-Map for S: A graph containing at most a set S of 

independence assertions, i.e. statements of the form (X  Y | Z)

 E.g., some I-Maps for S = {(A  B | C)}

A BC

A B

C

A B

C



I-Maps: why they matter

 If G is an I-Map for the independences in a distribution P, then 

we can represent P as a Bayes Net with graph G.

 Whereas we can’t do so if G is not an I-Map for P

 A given distribution may have many different I-Maps

 Minimal I-Map for S:  An I-Map for S for which the removal of any 

edge renders it not an I-Map for S

 Perfect Map for S: A graph with exactly the set of independencies in S



Example

 Two Perfect Maps for S = {(A  B | C)}
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I-Equivalence (1 of 2)

 Two graphs are I-Equivalent if they imply identical sets of 

independence assertions

 I-equivalent Not I-equivalent
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I-Equivalence (2 of 2)

 Two graphs are I-Equivalent iff they have the same

 Skeleton: graph ignoring edge direction

 Immoralities: v-structures without direct edge between parents
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Sidenote: Naïve Bayes Net

 NB assumes features conditionally indep. given the class:

Spam

“Lottery” “with” . . . “Dear”

P(Spam=true) 0.3

Spam P(“lottery” | 

Spam)

true 0.04

false 0.01

Spam P(“with” |

Spam)

true 0.6

false 0.59

Spam P(“dear” 

| Spam)

true 0.24

false 0.30



Limitations of Bayesian Networks

 Perfect Map for {(A  B | C, D), (C  D | A, B)}?

 Not possible!  Bayes Nets can’t express all possible 
sets of independence assertions.
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Alternative: Markov Networks

 Undirected Graphical Model
 No CPTs.  Uses potential functions c defined over cliques

 P(x) = c c(xc) Z = x c c(xc) 

Z

Grades
Trivia 

Knowledge
TV

Grades TV 1(G, TV)

bad none 2.0

good none 3.0

bad lots 3.0

good lots 1.0

TV Trivia

Knowledge 

2(TV, K)

none weak 2.0

lots weak 1.0

none strong 1.5

lots strong 3.0



Markov Net Joint Distribution

Grades TV Trivia

Know.

1(G, TV) 2(TV, K) 1(G, TV)

*2(TV, K)

P(G, TV, K)

bad none weak 2.0 2.0 4.0 0.12

good none weak 3.0 2.0 6.0 0.18

bad lots weak 3.0 1.0 3.0 0.09

good lots weak 1.0 1.0 1.0 0.03

bad none strong 2.0 1.5 3.0 0.09

good none strong 3.0 1.5 4.5 0.13

bad lots strong 3.0 3.0 9.0 0.27

good lots strong 1.0 3.0 3.0 0.09

Z = 33.5



Markov Nets Independence Assertions

 Instead of D-separation, simply graph separation

 So (Grades Trivia Knowledge | TV)

Grades
Trivia 

Knowledge
TV



Expressivity of Markov Networks

 Perfect Map for {(A  B | C, D), (C  D | A, B)}?
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Expressivity of Markov Networks

 Perfect Map for {(A  B | C, D), (C  D | A, B)}?

 Markov Nets can capture these independence 

assertions
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But…

 How about (A  C)  S, but (A  C | B)  S ?

 Can’t be captured perfectly in Markov Networks

 If graph separation -> conditional independence, new 

knowledge can only remove dependencies
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Bayesian Networks => Markov Networks

 Markov Nets can encode independences that Bayes

Nets cannot, and vice-versa

 To convert from BN to MN, “moralize”:

A C

B



Bayesian Networks => Markov Networks

 Markov Nets can encode independences that Bayes

Nets cannot, and vice-versa

 To convert from BN to MN, “moralize”:

A C

B



Markov Net Applications

 Best when no clear, directed causal structure

 E.g. statistical physics, text, social networks, image analysis (e.g. 

segmentation, below)

Zoltan Kato http://www.inf.u-szeged.hu/ipcg/projects/RJMCMC.html

http://www.inf.u-szeged.hu/~kato/

