Outline

- Basics of probability
- Statistical estimation
- Bayes Nets
- Naïve Bayes
- Markov Nets (briefly, we will come back to this)

Inference

- Learning
- Statistical Language Models

Inference: Variable Elimination

Doug Downey Northwestern EECS 474

Inference: Answering Queries

• Given:

- A probability model
- Subsets of random variables
 - Y (query) and
 - E (evidence) with assignments e to E
- Find P(Y | E = e)
- E.g.,
 - P(Battery | Starts = false)
 - P(Disease | Symptoms = e)
 - P(StockMarketCrash | RecentPriceActivity = e)

What else can we do with queries?

Prioritizing info gathering

Which additional evidence would be most informative?

Explanation

Why do I need a new fan belt?

Sensitivity Analysis

Which variable values are most critical?

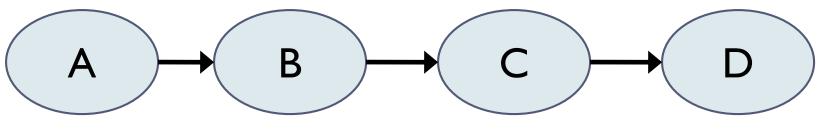
Gee, it's easy

$$P(\mathbf{Y} \mid \mathbf{E} = \mathbf{e}) = \frac{P(\mathbf{Y}, \mathbf{e})}{P(\mathbf{e})}$$

Given joint P(y, e, w), we can compute r.h.s. by summing out w, y

But...

Naïve summing is costly



 $\blacktriangleright P(A, B, C, D) = P(A) P(B|A) P(C|B) P(D|C)$

- $\blacktriangleright P(D) = \Sigma_A \Sigma_B \Sigma_C P(A) P(B|A) P(C|B) P(D|C)$
 - > $2^3 = 8$ combinations, $8^*3 = 24$ multiplications
 - Exponential in # of variables

Variable Elimination

С В Α \square

 $\mathsf{P}(D) = \Sigma_{\mathsf{A}} \Sigma_{\mathsf{B}} \Sigma_{\mathsf{C}} \mathsf{P}(A) \mathsf{P}(B|A) \mathsf{P}(C|B) \mathsf{P}(D|C)$

 $= \Sigma_{C} P(D|C) \Sigma_{B} P(C|B) \Sigma_{A} P(B|A) P(A)$ / P(B)

Variable Elimination

$$(A \rightarrow B \rightarrow C \rightarrow D$$

 $\mathsf{P}(D) = \Sigma_{\mathsf{A}} \Sigma_{\mathsf{B}} \Sigma_{\mathsf{C}} \mathsf{P}(A) \mathsf{P}(B|A) \mathsf{P}(C|B) \mathsf{P}(D|C)$

= $\Sigma_{C} P(D|C) \Sigma_{B} P(C|B) \Sigma_{A} P(B|A) P(A)$

Has 2+2+2=6 multiplications (vs. 24)

For *n*-edge binary chain, only **2***n* multiples

With evidence

С В D Α

 $\mathsf{P}(D|A=a) = \Sigma_{\mathsf{B}} \Sigma_{\mathsf{C}} \mathsf{P}(B|A=a) \mathsf{P}(C|B) \mathsf{P}(D|C)$

 $= \Sigma_{C} \mathsf{P}(D|C) \Sigma_{B} \mathsf{P}(C|B) \mathsf{P}(B|A=a)$

Variable Elimination

Two steps:

- Push summations as far as possible to right (assuming some ordering of variables)
- Compute the sum

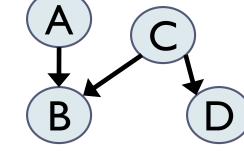
 $\mathsf{P}(D|A=a) = \Sigma_{\mathsf{B}} \Sigma_{\mathsf{C}} \mathsf{P}(D|\mathcal{C}) \mathsf{P}(\mathcal{C}|B) \mathsf{P}(B|A=a)$

 $= \Sigma_{\mathsf{C}} \mathsf{P}(\mathsf{D}|\mathsf{C}) \Sigma_{\mathsf{B}} \mathsf{P}(\mathsf{C}|\mathsf{B}) \mathsf{P}(\mathsf{B}|\mathsf{A}=a)$

"Factors"

▶ *P*(*A*, *B*, *C*, *D*) $= P(A) \cdot P(C) \cdot P(B \mid A, C) \cdot P(D \mid C)$

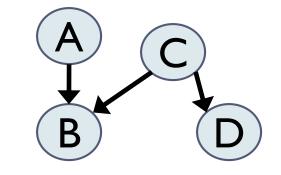
• Scope
$$[\phi_4] = \{D, C\}$$



- Variable Elimination: write out joint as factors
 - ▶ factor ϕ_i out of sum over X when X ∉ scope $[\phi_i]$

Discarding non-Ancestors

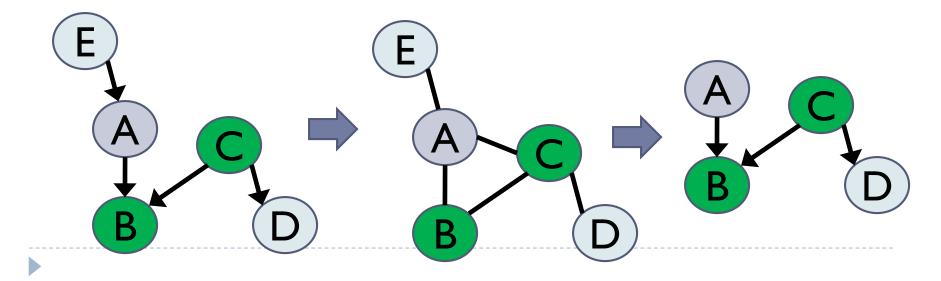
- P(A, B, C, D)= P(A) P(C) P(B | A, C)P(D | C)
- Query: P(B, C | A=a)
 - $= \Sigma_{D} P(C) P(B \mid A=a, C)P(D \mid C)$ = P(C) P(B \mid A=a, C) $\Sigma_{D} P(D \mid C)$



- > $\Sigma_D P(D \mid C) = 1$ for all C, we can ignore it
- In general: when computing P(Y | E) we can ignore nodes not in Ancestors(Y, E)

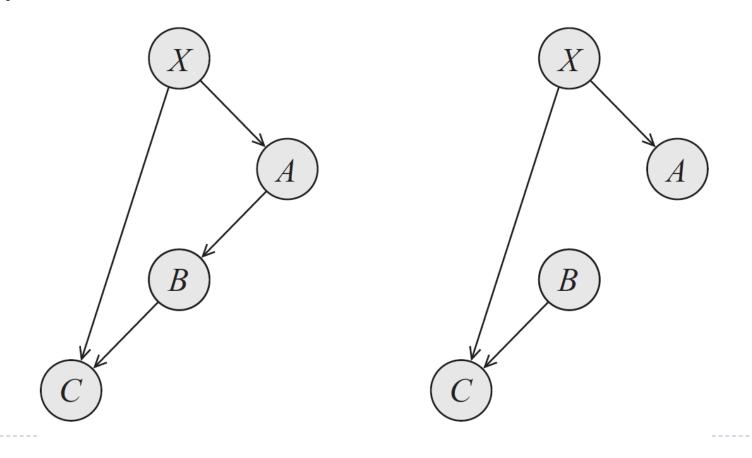
Discard by separation in Markov Network

- P(A, B, C, D, E)= P(E) P(A|E) P(C) P(B | A, C)P(D | C)
- Query: P(B, C | A=a)
 - Throw out variables separated from query by evidence in moral graph



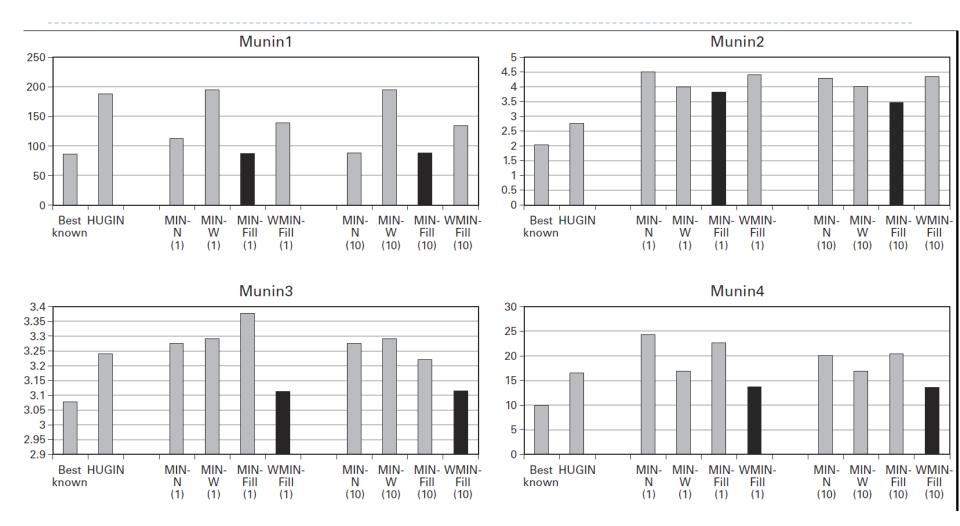
Semantics of summed-out factors

 Sums don't always correspond to simple conditional probabilities

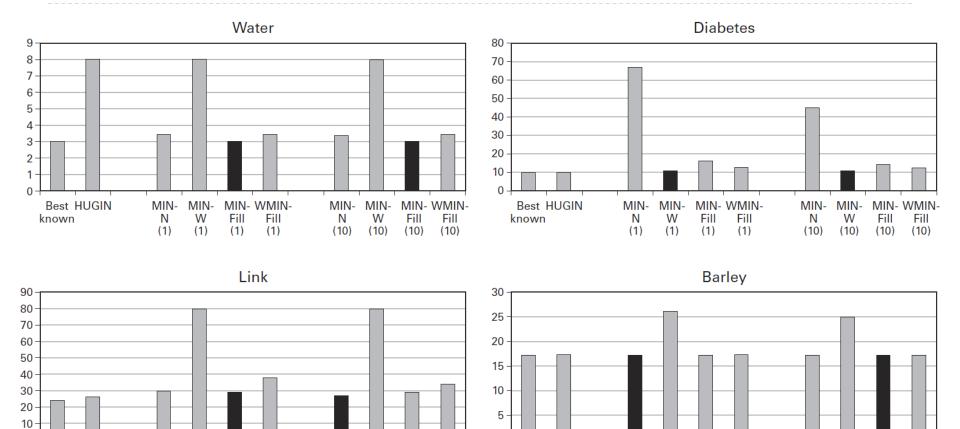


Complexity of Inference

- What does variable elimination buy us?
- It depends on the network
 - If the distribution doesn't factor well, elimination won't help
- Generally, Bayesian Inference is hard
- NP-complete problems can be reduced to it
- Ordering heuristics:
 - Min neighbors (weighted)
 - Min fill (weighted)



D



0 -

Best HUGIN

known

MIN- MIN- MIN- WMIN-

Fill

(1)

Fill

(1)

W

(1)

Ν

(1)

MIN- MIN- MIN- WMIN-

W

(10)

Ν

(10)

Fill

(10)

Fill

(10)

Best HUGIN

known

MIN- MIN-

Ν

(1)

W

(1)

MIN- WMIN-

Fill

(1)

Fill

(1)

MIN- MIN-

Ν

(10)

W

(10)

MIN- WMIN-

Fill

(10)

Fill

(10)

0-

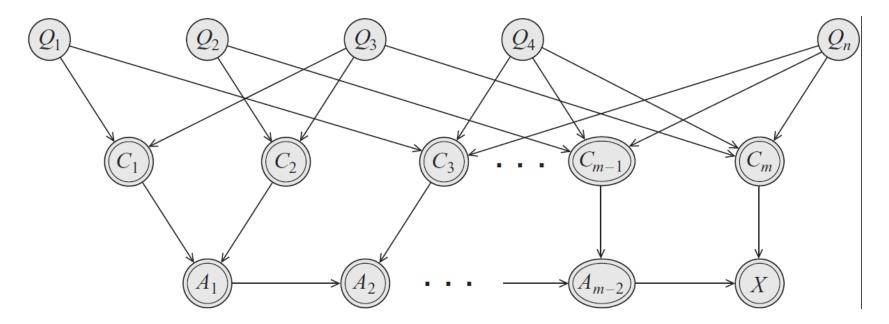
Reduction from Boolean Satisfiability (1)

Boolean Satisfiability

Given a boolean formula in 3-CNF, e.g.: (x1 v -x3 v x7) ^ (x4 v x5 v -x6) ^ ... Is there an assignment to variables (i.e. xi = true|false) that makes the formula true? Reduction from Boolean Satisfiability (2)

 $C_{i} = clauses (e.g. (x1 v - x3 v x7))$

> $X = true iff all C_i$ are true, A_i 's are "and" variables



Inference complexity details

- Actually #P-complete
 - Asking for probability ≈ counting number of satisfying assignments
- Even approximation is NP-hard
- (see book)