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Abstract

A Grid Information Service (GIS) stores information
about the resources of a distributed computing environment
and answers questions about it. We are developing RGIS, a
GIS system based on the relational data model. RGIS users
can write SQL queries that search for complex compositions
of resources that meet collective requirements. Executing
these queries can be very expensive, however. In response,
we introduce the nondeterministic query, an extension to the
SELECT statement, which allows the user (and RGIS) to
trade off between the query’s running time and the number
of results. The results are a random sample of the determin-
istic results, which we argue is sufficient and appropriate.
Herein we describe RGIS, the nondeterministic query ex-
tension, and its implementation. Our evaluation shows that
a meaningful tradeoff between query time and results re-
turned is achievable, and that the tradeoff can be used to
keep query time largely independent of query complexity.

1 Introduction

As the scale and diversity of the resources, applications,
and users involved in Grid computing [12, 15] continues to
explode, the amount of information needed to keep track of
them grows commensurately. Simultaneously, applications
need to pose and answer increasingly powerful queries over
this information in order to exploit Grid resources well and

Effort sponsored by the National Science Foundation under Grants ANI-
0093221, ACI-0112891, ANI-0301108, EIA-0130869, and EIA-0224449.
Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author and do not necessarily reflect the views
of the National Science Foundation (NSF).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SC’03, November 15-21, 2003, Phoenix, Arizona, USA
Copyright 2003 ACM 1-58113-695-1/03/0011...$5.00

satisfy users. Grid Information Service (GIS) systems pro-
vide this functionality. The possible models and the design
space for GIS systems is large.

Our view of a GIS is that it is a database (in the generic
sense of the word) of information about the entities within
a wide area distributed high performance computing envi-
ronment. Examples of Grid entities include organizations,
people, computational resources (hosts, clusters), commu-
nications resources (switches, routers, topologies), services,
benchmarks, software, event channels, sensors, scientific
instruments, and others. A GIS consists of a set of objects
that represent these entities, relationships between objects,
and systems needed to query and update the objects and re-
lationships. Each object has a unique identifier, a times-
tamp, and a set of attributes. Updates to the database take
the form of additions or deletions of objects and of changes
to the attributes of existing objects. The GIS makes updates
available to queries as soon as possible. It also manages ac-
cess to the objects, making sure that they are updated and
read only by valid users. It may present different views of
the objects to different users. A more detailed description
of this view of a GIS is available elsewhere [25].

We are developing a GIS system, RGIS, that is based
on the relational data model. Specifically, RGIS servers
are implemented on top of the Oracle RDBMS and use
SQL as their query language. Oracle is not a require-
ment of our approach—other RDBMSes could also be used.
RGIS focuses on modeling the hardware and software re-
sources of a distributed computing environment. Informa-
tion streams from dynamic resource monitoring and predic-
tion tools such as RPS [7] are currently outside of the scope
of RGIS, although RGIS does model the existence and loca-
tion of such tools. We plan to extend RGIS to provide a uni-
fied query model over resource and monitoring information.
While most computational grids today are relatively small,
we intend RGIS to scale to very large grids, and possibly
even to the scale of the Internet. An in-depth description of
the merits of a unified relational approach to GIS systems is
available elsewhere [6].

A powerful feature of RGIS is that users can write
queries in SQL that search for complex compositions of re-
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sources, such as groups of hosts and network resources, that
meet collective requirements. These queries can be very
expensive to execute, however. In response, we have intro-
duced an extension to the SQL select statement that we call
the nondeterministic query. In essence, the nondeterminis-
tic query extension allows the user (and RGIS) to trade off
between the running time of a query (and the load it places
on an RGIS server) and the number of results returned. The
result set is a random sample of the result set of the deter-
ministic version of the query, which we argue is sufficient
and appropriate for a GIS. We implement nondeterminis-
tic queries using a combination of query rewriting, schema
extensions, indices, and randomness. No changes to the
RDBMS are needed. Combined with two other query exten-
sions, scoped queries and approximate queries, which are
described elsewhere [22], nondeterministic queries make it
possible to ask complex questions of RGIS and get useful
responses quickly.

In this paper, we describe RGIS, the nondeterministic
query extension, and its implementation. We also present
a performance evaluation of our implementation, populat-
ing our database with networks as large as five million
hosts using our GridG [21] grid generator tool. The eval-
uation shows that a meaningful tradeoff between query pro-
cessing time and result set size is possible using nondeter-
ministic queries, and that we can use that tradeoff to keep
query running time largely independent of query complex-
ity. These results suggest that we can deliver powerful rela-
tional queries to users.

2 Related work

The data model, query language, and implementation of
GISes and similar services that store the information about
networked resources has been evolving for some time.

Today, many sites that provide externally accessible
computing resources make a description of those machines
available as web pages. Web search engines are often used
to find appropriate resources. This has been aided signifi-
cantly by the advent of highly discriminating search algo-
rithms for arbitrary documents, such as PageRank [3]. By
providing highly structured data, most GIS systems aim to
provide more sophisticated queries.

Within the networking community, SLP [36] has been
proposed as a standard for discovering services. The DNS
name service [2] is universally used. DNS maps a hierarchi-
cal name (a path) to a blob of information and is typically
used to resolve hostnames to IP addresses. Protocols for
constructing and querying hierarchical distributed databases
such as X.500 [17] and LDAP [16] can be viewed as exten-
sions to this idea, although hierarchical databases predate
DNS. Each node on an LDAP tree can have multiple typed
attributes associated with it. An LDAP query is a traversal

of a subtree that returns nodes whose attributes satisfy the
query constraints. Each subtree can be serviced by a dif-
ferent LDAP server, making it straightforward to partition
responsibility and security over multiple sites. In contrast
to these approaches, RGIS builds on a relational data model
instead of a hierarchical data model.

Within the distributed systems community, service lo-
cation and naming services are basic needs. DCE [32],
CORBA [23], and Java’s Jini Framework [37] include these
services. In DCE and CORBA, the service and the query
consists of a type specification for a procedure or object
(the interface) and the result is matching instances. Jini uses
a more general tuple of attribute-value pairs as the service
descriptor, and a tuple of attribute constraints as the query.
One strand of recent research [1, 35, 18, 33] has focused on
timelines of updates and on how services can push updates
to users. Another strand has focused on distributing data
throughout the network and then routing queries to likely
nodes where matching data may reside using distributed
hash tables [30, 28]. In contrast to these systems, RGIS at-
tempts to provide compositional queries (joins) where col-
lections of objects are needed to satisfy the query.

The Grid computing community has seen an explosion
of work on GIS systems. The most relevant systems are
Globus MDS2 [5], the Condor Matchmaker [26], and R-
GMA [11]. MDS2 is based on LDAP and defines a schema
(the attribute types) that can be associated with nodes in the
tree. In contrast, RGIS uses a relational data model.

In the Condor Matchmaker, both resources and queries
are collections of attributes and constraints. This enables
bilateral matchmaking, where both the resource owner and
the querier can constrain which results are returned on a
query. Bilateral matching is a very fast process. Condor
Matchmaker was later extended to support gang-matching,
meaning that a query can be written that requires more than
one resource to be satisfied [27]. Gang-matching is imple-
mented using prioritized search with backtracking, which
is more expensive than the search for bilateral matchmak-
ing. Recently, Liu and Foster have proposed a matchmak-
ing scheme and developed a system, Redline, in which the
language for constraints enables the definition of constraint
satisfaction problems (CSPs) [19]. CSPs are NP-Hard and
are solved using the heuristic techniques implemented in an
underlying CSP solver.

R-GMA [11] is close to our work in that it also pro-
poses a relational data model for GIS systems. RGIS differs
from R-GMA in two ways that are relevant to this paper.
First, R-GMA focuses currently on dynamic properties of
resources (e.g., load), while RGIS focuses currently on rel-
atively static properties (e.g., memory). Both systems are
evolving to unify static and dynamic information, however.
The success of R-GMA suggests that effectively incorporat-
ing dynamic information into RGIS is feasible. Our second
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Figure 1. RGIS Structure.

difference is RGIS’s support for nondeterministic queries,
as described here.

Interestingly, by enabling what we call compositional
queries, the Condor Matchmaker with gang-matching, Red-
line, R-GMA, and RGIS run into the same problem: the
exploding cost of query execution. Each system deals with
this problem in a different, heuristic manner. This paper
describes and evaluates RGIS’s approach to this problem,
which is random sampling. While there has has been con-
siderable work in how to build random sampling directly
into database systems (Olken’s dissertation [24] is a good
introduction to this), reducing cardinality of results [4], and
incremental queries [31], current database systems do not
support these features. RGIS builds its random sampling on
top of unmodified ordinary database systems using query
rewriting, schema extensions, indices, and randomness.

Efforts to define the broad structure of the computational
grids [14] and standardize the specifics of interaction among
components [13] suggest that there are roles for multiple
kinds of GIS systems, and that different systems can and
will interoperate.

3 Design of the RGIS system

Figure 1 illustrates the structure of the RGIS system, fo-
cusing on a single RGIS server. We expect that each site
within a computational grid will run one such server, al-
though multiple servers per site can also be supported. The
goal of the RGIS server for a site is to provide a view of the
computational grid appropriate to that site’s users. A site’s
RGIS server is responsible for all queries issued by users on

the site.
An RGIS server is built around an RDBMS system. At

the present time, we use Oracle 9i Enterprise Edition, but
our system could also be based on other RDBMS systems
such as DB2, MS SQL Server, Postgres, and MySQL. A
early implementation of our work used MySQL. Like most
serious database systems, Oracle provides a single front-end
interface to multiple back-end implementations. In partic-
ular, this provides platform independence (Oracle runs on
many operating systems and platforms) and intra-site scala-
bility (Oracle has a variety of implementations, including a
Parallel Server product that scales over clusters). All com-
ponents of RGIS above the database front end are written in
Perl for portability.

RGIS includes a type system to identify a wide range of
components including hosts, routers, switches and hubs at
layers 2 and 1, links at layers 3 through 1, paths at layer 3,
benchmarks, operating systems, operating system vendors
and versions, switches, switch vendors, software modules,
running software, and communication endpoints. The idea
of modeling networks at layer 2 and below, which can be
quite useful in mapping applications, is inspired by the Re-
mos system’s bridge discovery collector [20]. Typed ob-
jects are inserted into the database by updating one or more
tables. An object is also identified in a special table (in-
sertids) by a unique insertion identifier, a timestamp (NTP
is assumed), and ancillary information to support our spe-
cialized needs, such as nondeterministic queries, and to link
virtual resources with physical resources [10]. Every other
table that is updated includes this insertion id, hence mak-
ing it easy to find all elements of an object, no matter what
tables it spans.

The RGIS schema includes the sequences, tables, con-
straints, triggers, and indices that represent our grid model-
ing efforts. Figure 2 shows a high-level view of the RGIS
schema, focusing on the representation of a host computer.
Figure 3 gives details of the current implementation of the
host-specific tables.

Given transactional updates, the constraints and triggers
are designed to keep the database in a consistent state. We
use Oracle’s access control mechanisms to assure that in-
sertions, updates, and deletions occur only via stored proce-
dures that force transactions. For every type of object, there
is an associated PL/SQL package (essentially, a class) that
provides this functionality. Each package also includes non-
transactional versions of the operations which very privi-
leged users can use to batch multiple updates together into
a single transaction. The code to implement each package
is generated automatically using templates written in Perl.

Layered on top of the RDBMS front-end is a query man-
ager/rewriter, and an update manager. Together, these two
provide the core application interface to an RGIS server.
This interface is exported through a layer that provides au-
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id => time, rand
insertids

id => { id}
virtuals

id => id
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id => endtime
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data link layer

distadx => { adx}
macassocs

ip => macaddr
ipmacassoc

adx => macaddr
connectormacassoc

id,typeinfo,distadx
connectorswitches

id,typeinfo,src,dest
connectorlinks

physical layer

distadx => { adx}
connectorassocs

Figure 2. Overview of the RGIS Schema. High-
lighted are the minimum tables used to repre-
sent a host. A host may also be represented
in the leases table if it may leave the system,
the virtuals table if it is a virtual machine, and
the futures table, if it is not yet instantiated.

thentication of the user and check of his capabilities for
each request, mapping from an external notion of user to
a database-local notion of user. This interface in turn is
made visible to the outside world via a web interface (Fig-
ure 4), and a SOAP interface, both running over the en-
crypted HTTPS protocol.

The update manager aggregates updates (insertions of
new objects, deletions of existing objects, and changes
to the properties of existing objects) coming from local
sources and remote sources and batches them into transac-
tions for the RDBMS. In this role, it can prioritize updates
and also control the rate of updates and the update latencies
going into the database.

RGIS servers do not talk directly with each other, but
indirectly via a content delivery network (CDN), which is
used solely to propagate updates to friendly RGIS servers.
There is no implicit notion of trust among RGIS servers.
If a site is interested in receiving updates from a remote
RGIS server, it must arrange with the remote administrator

CREATE t abl e hos t s (

di st i p var char 2( 15)      not  nul l  pr i mar y key,

name        var char 2( 256)     def aul t ( ' UNKNOWN' ) ,

numpr oc number            def aul t ( 1) ,

mhz number            def aul t ( 0) ,

const r ai nt  good_mhz_host s check  ( mhz>=0) ,

ar ch        var char 2( 32)      def aul t ( ' UNKNOWN' ) ,

const r ai nt  good_ar ch_host s f or ei gn key  ( ar ch)  

r ef er ences ar cht ypes( name) ,

hwvendor VARCHAR2( 32)      DEFAULT( ' UNKNOWN' ) ,

const r ai nt  good_hw_host s f or ei gn key ( hwvendor )  

r ef er ences har dwar evendor s( name) ,

os var char 2( 32)      def aul t ( ' UNKNOWN' ) ,

const r ai nt  good_os_host s f or ei gn key ( os)  

r ef er ences ost ypes( name) ,

osvendor var char 2( 32)      def aul t ( ' UNKNOWN' ) ,

const r ai nt  good_osv_host s f or ei gn key ( osvendor )  

r ef er ences osvendor s( name) ,

osver var char 2( 256)     def aul t ( ' UNKNOWN' ) ,

ker nel ver var char 2( 256)       def aul t ( ' UNKNOWN' ) ,

mem_mb number            def aul t ( 0) ,

const r ai nt  good_mem_host s check  ( mem_mb>=0) ,

vmem_mb number            def aul t ( 0) ,

const r ai nt  good_vmem_host s check ( vmem_mb>=0) ,

di sk_gb number            def aul t ( 0) ,

const r ai nt  good_di sk_host s check ( di sk_gb>=0) ,

l ocat i on    var char 2( 256)     def aul t ( ' UNKNOWN' ) ,

owner        var char 2( 256)     def aul t ( ' UNKNOWN' ) ,

descr i pt i on var char 2( 256) ,

i nser t i d number            not  nul l  uni que,

const r ai nt  good_i nser t _host s f or ei gn key

( i nser t i d)  r ef er ences  i nser t i ds( i nser t i d)

ON DELETE cascade

) ;

CREATE t abl e i nser t i ds (

not e      var char 2( 256) ,

t i me      t i mest amp  not  nul l ,

i nser t i d number              not  nul l  pr i mar y key,

r and      number              not  nul l

) ;

CREATE t abl e i passocs (

di st i p var char 2( 15)      not  nul l ,

i p var char 2( 15)      not  nul l  pr i mar y key,

i nser t i d number            not  nul l ,

const r ai nt  good_i nser t _i passocs f or ei gn key 

( i nser t i d)  r ef er ences i nser t i ds( i nser t i d)

ON DELETE cascade

) ;

Figure 3. Specific SQL representation of a
host. Definitions of indices elided.
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Figure 4. RGIS web interface.

to create a key pair. Each update to the local RGIS serer
is then encrypted in a manner similar to PGP multiple des-
tination messages, making it readable only to those RGIS
servers that hold one of the perhaps many keys used in the
encryption process. The CDN is used to send the update
to the group of all those holding keys, using, for example,
application-layer multicast for efficiency. If a higher level
of trust between the two RGIS servers exists, finer grain in-
formation control is also possible: the update can contain
a list of user keys, one of which must be matched before
an RGIS server will use the update to answer a query. An
RGIS server combines local updates and remote updates to
create a view of the computational grid that corresponds to
that which its users have access.

In the limit, each RGIS server could contain data about
all resources on a wide area network, although we expect
this will rarely happen. Although this is clearly asymptot-
ically unscalable, it is not unreasonable for computational
grids of likely size. Consider a computational grid of one
billion hosts and routers (about five times the current size
of the Internet). With two kilobytes of information per host,
about 2 TB of data storage would be necessary in the RGIS
server. This requires less than $10,000 of disk storage using

Figure 5. Insert, update, and delete rates.

a modern direct-attach RAID box, making it clearly within
the realm of possibility. Furthermore, the $/MB of disk ca-
pacity is shrinking much faster than the Internet is growing.
Update rates can be an issue, but three things ameliorate
this. First, we can achieve quite high update rates on off-
the-shelf RDBMS systems such as Oracle. Figure 5 shows
the rates for insertions, updates, and deletions in RGIS with
different size databases running on our hardware (See Sec-
tion 5 for details about the hardware and software configu-
ration). Here an insert means adding a host to the database,
which involves a transactional modification of a sequence
and three tables, an update means modifying the memory
attribute of a host already in the database, which is a trans-
actional modification of two tables, and delete means to re-
move a host from the database, transactionally modifying
three tables. Second, bandwidth into a site grows with the
update rate, since the update rate grows with the number of
hosts and routers. Third, RDBMS systems such as Oracle
and DB2 can scale over clustered servers to support very
high update rates. In effect, we can leverage the existing
TPC-C online transaction processing benchmark competi-
tion [34] to address the updates.

A site sends queries only to its RGIS server. This ties
the resources a site is willing to commit to its RGIS server
to the number and kind of queries it wants to make. This
is vital because the nature of many RGIS queries is simi-
lar to decision support queries (TPC-H [34]) in relational
database systems. Such queries can be very expensive to
execute and so are unlikely to be welcome on foreign RGIS
servers.

The goal of the query manager/rewriter is to shape the
query workload so that it can be effectively executed by the
RDBMS, by which we mean that the load on the RDBMS
is kept below one and individual queries finish quickly.
Queries take the form of select statements written in a
slightly extended form of SQL. The query manager/rewriter
translates queries into the underlying SQL dialect, modify-
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“Find 2 hosts with Linux that 
together have 3 GB of RAM”

select 
h1.insertid, h2.insertid 

from 
hosts h1, hosts h2 

where 
h1.os=‘LINUX’ and h2.os=‘LINUX’ 

and
h1.mem_mb+h2.mem_mb>=3072 

Figure 6. An RGIS Query.

ing the query semantics to balance between the needs of the
query and the needs of the system. In essence, the query
manager/rewriter can trade off between the result set size
for a query and the resources the query requires to execute.
The adaptation mechanism it uses is the selection probabil-
ity for inputs of the query. The next section describes this
idea in detail.

4 Nondeterministic queries

Parallel and distributed applications are not interested in
individual resources per se, but rather in compositions of
them. For example, suppose a data parallel program has
been compiled to run on four processors. At startup, it will
want to ask questions such as “find me a set of four unique
hosts which in total have between 0.5 and 1 GB of memory
and which are connected by network paths that can provide
at least 2 MB/s of bandwidth with no more than 100 mil-
liseconds of latency.” Such questions can be readily posed
to RGIS using the SQL language. Indeed, SQL lets the
application or user combine multiple resources in arbitrary
ways. Figure 6 shows a simple RGIS query that is search-
ing for all pairs of hosts that both run the Linux operating
system and together have at least 3 GB of RAM. For clarity
in this example query, we omit the constraint that the two
machines be distinct. In our evaluation, where in part we
use similar queries, we introduce this constraint.

Because the query is declarative, there is significant
room for the query optimizer in the RDBMS to make the
query efficient. It also means that the query is indepen-
dent of the underlying RDBMS implementation that is be-
ing used. The same query may run today on a basic Win-
dows implementation of Oracle, while tomorrow it may be
run by a parallel implementation of Oracle on a cluster or
SMP. The query is also independent of the indices created
by the database or by the database administrator. Hence, if
this form of query becomes common, the administrator can
create indices to speed it up. Finally, if queries are writ-
ten in ANSI standard SQL, the underlying RDBMS can be
changed without changing the query. Common queries can
also be provided as materialized (i.e., precomputed) views

on the database.
Unfortunately, queries such as the one in Figure 6 can be

very expensive to execute, especially as the number of joins
(number of hosts in the query in this example) grows. In the
worst case, the query cost can grow exponentially with the
number of joins. Not only must individual queries not take
long periods of time to execute, an RGIS server must also
be able to handle the query workload of a whole site. If we
supported such queries directly, we would very soon begin
disappointing users and overloading the RGIS server.

Deficiencies of limited deterministic queries

One approach to reducing the work involved in answer-
ing a query is to limit the size of the result set that is returned
(using “rownum � N” as part of the where clause in Oracle,
or MySQL’s “limit” clause, for example). The query would
then only run until the specified number or rows was re-
turned. We’ll refer to this as a limited deterministic query.
It is intuitive why a limited deterministic query would be
reasonable from an application’s perspective. The applica-
tion making the query of Figure 6 is not interested in all
pairs of hosts that meet its requirements. It is merely trying
to find some pairs that do.

Limiting result set size has two serious problems, how-
ever. First, the computational time for the query is not di-
rectly proportional to the result set size—it depends on the
data distribution in the input tables. Continuing the exam-
ple, the rarer that pairs of hosts that meet the requirements
are, the longer a limited query will run. In the worst case,
the RDBMS may have to scan the cross product of the hosts
table to the very end to find a single match, making this
query as expensive as one without limits. The other problem
with the limited deterministic query is that the query returns
exactly the same results each time it is run. Suppose there
are 10 pairs of hosts that are appropriate, but the query is
limited to one pair. Different applications making the same
query would end up choosing the same pair, leading to con-
tention. In general, limited deterministic queries can lead to
certain resources suffering contention hotspots merely due
to where they happen to be placed in the database.

Implementing nondeterministic queries

RGIS limits query running time (and load) and avoids
contention through the use of nondeterministic queries. The
left-hand side of Figure 7 shows a nondeterministic, time-
bounded version of the earlier query. The additions to the
query are shown in italics. A nondeterministic query returns
a random subset of the full set of query results. The compu-
tational cost of the query is controlled by the selection prob-
ability, which is derived from the time limit of the “within”
clause and the current load on the RGIS server. The selec-
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select nondeterministically
h1.insertid, h2.insertid 

from 
hosts h1, hosts h2 

where 
h1.os=‘LINUX’ and h2.os=‘LINUX’ and
h1.mem_mb+h2.mem_mb>=3072 

within
2 seconds

SELECT 
H1.INSERTID, H2.INSERTID 

FROM 
HOSTS H1, HOSTS H2 , 
INSERTIDS TEMP_H1 , INSERTIDS TEMP_H2 WHERE 
(H1.OS='LINUX' AND H2.OS='LINUX' AND
H1.MEM_MB+H2.MEM_MB>=3072) AND

(H1.INSERTID=TEMP_H1.INSERTID AND
TEMP_H1.rand > 982663452.975047 AND
TEMP_H1.rand <= 1025613125.93505)  AND

(H2.INSERTID=TEMP_H2.INSERTID AND
TEMP_H2.rand > 1877769069.94039 AND
TEMP_H2.rand <= 1920718742.90039)

Query Manager
and Rewriter

Random sample of
input tables

Probability of inclusion
determined by time constraint

and server load

Figure 7. An RGIS nondeterministic query and
its implementation.

tion probability is the probability that a row of an input table
will be included in the join. Intuitively, as the load increases
or the time limit shrinks, the selection probability shrinks.
As the selection probability shrinks, so does the amount of
work needed to perform the query and the expected num-
ber of rows returned by it. Each time the query is run, the
rows returned are different while the computational cost of
getting them stays roughly the same.

We implement nondeterministic queries using a com-
bination of query rewriting, schema extensions, indices,
and randomness. No changes to the RDBMS are needed.
When a nondeterministic query is posed to the query man-
ager/rewriter, it determines a selection probability, � , for
the query. Associated with each object inserted into the
database (in the insertids table), at insert time, is a ran-
dom number, ranging from ������� to ���
	�� , for a range,
������
	������������ . We translate the � into a subrange,� ���� . Next, for each input table ��� in the query, we
add a where clause that constrains rows in that table to
have associated random numbers in the range � � ��� � ��� ��� ,
where � � is chosen from a uniform random distribution over
� � ��� �!� � �
	���" at query translation time.

It is important to note that this approach has a grouping
effect that should ideally not occur in an implementation of
random sampling. Two objects inserted into the database
may be assigned nearby random numbers. Hence, if one is
chosen, there is a greater likelihood that the other will also
be chosen. With small selection probabilities, the effect is
negligible. However, to ameliorate it, we regularly “reshuf-
fle” the insertids table, assigning new random numbers to
objects.

In addition to the random numbers associated with each
object in the database, the database also includes indices
on these random numbers and on their associations with
other attributes. These indices help to make the random
sampling fast. In the next section, we will evaluate the ef-
fectiveness of nondeterministic queries for limiting query
time and load.

Scoped and approximate queries

RGIS also supports two other methods for speeding up
queries by modifying their semantics, scoping and approxi-
mation [22]. It is a common misconception that, unlike hier-
archical data models, it is impossible to scope queries in the
relational data model. In actuality, it is schema-dependent.
Because the RGIS schema models the network, it is pos-
sible to scope queries with respect to the network, either
by prefix-matching against IP addresses or by rooting the
query at a router or switch. Like nondeterministic queries,
scoped queries return a subset of all possible results. We
also exploit the network structure by approximating large
joins with complex constraints with smaller joins and sim-
pler constraints. Approximate queries return a set of results
that overlaps with the set of all possible results. The remain-
der of this paper focuses on nondeterministic queries.

Common queries

One issue with relational queries is that their power
comes with significant complexity. Indeed, in industry, the
development of relational queries and their optimization is
often allotted to a specialist. To address this, we are de-
veloping a set of “common queries”, which are essentially
Perl scripts that generate queries for what we believe will
be common forms of questions. However, it is possible that
the role of a “grid query developer” may also need to exist.

5 Evaluating nondeterministic queries

Our evaluation of nondeterministic queries examines
how the query run time and the result set size depends on
the database size, the selection probability, and the com-
plexity of the query. We use two different queries. The first
looks for groups of hosts that together have a given amount
of memory. The second looks for two hosts of the same
operating system that are directly connected.

Unless otherwise noted, our experimental infrastructure
is based on Oracle 9i Enterprise Edition running on Red
Hat Linux 7.1 on a dedicated Dell PowerEdge 4400 server.
The server has two 1 GHz Xeon processors, 2 GB of main
memory, and a PERC3DI RAID controller producing about
240 GB of RAID 5 storage over eight 36 GB U3 SCSI disks.
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GridG: realistic synthetic grids

To evaluate queries, we must first populate our database.
We did this using GridG [21], our tool kit for generating
realistic computing grids. GridG generates a Grid as an an-
notated topology network graph in which hosts, routers and
other network devices are represented as nodes. The topol-
ogy has a hierarchical structure and also conforms to the
power laws of Internet topology [9]. Annotations include
memory, clock speed, CPU type, number of CPUs, operat-
ing system type, link bandwidths, router bandwidths, etc.
Figure 8 illustrates the architecture of GridG.

In the following, we will separately describe the GridG
parameters used in evaluating each form of query. In gen-
eral, we populated our database using power law distribu-
tions found for routers in the Internet [9] and the memory
distribution found in Smith, et al’s study of MDS server
contents [29].

“Find n hosts with at least 3 GB of memory”

This query is a generalization of our running example
from Section 4, but parameterized to find � different hosts.
A four host example is shown in Figure 9. What is returned
are the distinguished IP addresses of the hosts. Note that
while such queries can become quite complex as the num-
ber of hosts grows, they can generally be automatically gen-
erated very easily.

To evaluate the performance of queries like this, we
needed to populate the database with large numbers of hosts
whose memory sizes were distributed in meaningful ways.
To do this, we studied (anonymized) data dumps from the
MDS servers running on several large grids, and data pro-
vided by the BOINC project at Berkeley. The largest dataset
was one collected by Smith, et al [29]. Smith’s dataset con-
tains fewer than a thousand hosts. We extracted memory
sizes from Smith dataset and then configured GridG to gen-
erate hosts with the same memory size distribution. Fig-
ure 10 shows the memory size distribution.

Using the memory size distribution, we generated grids
of 50,000, 500,000, and 5,000,000 hosts with GridG. For
each grid, we evaluated 2, 4, 8, and 16 host versions (using

select nondeterministically
h1.distip, h2.distip, h3.distip, h4.distip 

from 
hosts h1, hosts h2, hosts h3, hosts h4 

where 
h1.mem_mb+h2.mem_mb

+h3.mem_mb+h4.mem_mb>3072 and
h1.insertid<>h2.insertid and 
h1.insertid<>h3.insertid and 
h1.insertid<>h4.insertid and 
h2.insertid<>h3.insertid and 
h2.insertid<>h4.insertid and 
h3.insertid<>h4.insertid

within 
1 seconds; 

Figure 9. Sample query to find 4 hosts with
minimum memory over 3GB.
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2, 4, 8, and 16-way joins) of the query, varying selection
probabilities. We ran each query five times, measuring the
query running time and the number of rows returned by the
query. We report the mean, minimum, and maximum of the
five runs. Figure 11 shows all the performance data.

In addition to the nondeterministic queries, we also eval-
uated the performance of deterministic and limited deter-
ministic versions of the simplest query (2 way join) on the
smallest number of hosts (50K) , data that occupies the first
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Number of rows selected Query Time (seconds)
Number of Hosts Number of joins Selection Probability Average Min Max Average Min Max

50K 2 way deterministic - - - ��� hour ��� hour ��� hour
50K 2 way limited deterministic 1,10 1,10 1,10 0.13 - -

1 or 10 rows
50K 2 way 0.001 562 261 933 0.42 0.376 0.463

0.01 55729 50093 66803 17.8 17.3 18.7
4 way 0.0001 527 111 1343 0.35 0.3 0.45

0.0005 131791 69357 181139 26.3 12.1 34.2
8 way 0.00005 1156 0 3103 0.72 0.53 0.99

0.0001 178853 1920 597911 29.3 0.83 102
16 way 0.00001 0 0 0 6.67 6.64 6.7

0.00005 298598 0 1492992 81.3 6.64 380
500K 2 way 0.0001 566 299 802 0.81 0.53 0.94

0.0005 13048 10620 16168 5.34 4.42 6.73
0.001 57524 13048 62340 18.3 16.3 19.43
0.002 216382 210290 220030 73.0 70.0 76.0

4 way 0.00001 541 0 1293 0.36 0.26 0.48
0.00005 143226 62853 219366 26 18.2 32.9

8 way 0.000005 1231 0 6848 0.69 0.53 1.3
0.00001 54127 9368 130971 9.1 2.2 19.9

16 way 0.000001 0 0 0 6.65 6.63 6.7
0.000005 804533 0 3930540 115.6 6.63 523.6

5000K 2 way 0.00001 507 380 635 1.1 0.96 1.13
0.0001 60315 52707 70613 22.4 20.9 23.9

4 way 0.000001 235 20 624 0.55 0.46 0.65
0.000005 189920 109533 322668 23.2 17.5 35.4

8 way 0.0000005 551 138 1296 0.77 0.71 0.87
0.000001 272704 110614 674554 28.9 13.9 68.2

16 way 0.0000001 0 0 0 6.7 6.69 6.71
0.0000005 121473 0 330884 31 6.7 78.1

Figure 11. Performance of nondeterministic queries with different sizes of grid, different numbers of
hosts, and different selection probabilities.

two rows of Figure 11. Notice that the purely determinis-
tic query, which will eventually return all possible results,
requires over an hour of running time. The limited deter-
ministic query, which returns the first result, or the first 10
results, finished very quickly (0.13 s), but always returns
the same results. The nondeterministic version of the same
query executes more slowly, taking about twice as long even
with a very low selection probability. However, following
the discussion of Section 4, we now get a different set of
results each time we run the query, and the query will do a
fixed amount of work each time it is run. It is slower be-
cause there are two additional equijoins with the insertids
table, as can be seen in Figure 7. This overhead is the cost
for implementing random sampling above the database. A
database engine that supported random sampling would not
pay this penalty.

To better illustrate our results for nondeterministic
queries, we show two slices through the table. We use the

500,000 host grid. Figure 12 shows the average number of
results and the average query time for the two host version
of the query as a function of the selection probability. The
left hand scale corresponds to the query time, while the right
hand scale shows the number of results. Note that all scales
are logarithmic. These results show that it is possible to
meaningfully trade off between query processing time and
result set size. We can vary the query time and the result
set size over several orders of magnitude by modulating the
selection probability.

Figure 13 shows a second slice through our data. Once
again, we have used the 500,000 host grid and show the
average query time and result set size, but here we vary the
complexity of query (the number of hosts asked for) and
choose selection probabilities to try to keep the query time
as constant as possible. The point here is that it is possible
to use the selection probability to control the query time
largely independent of query complexity.
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Grid topology-related query

Because RGIS also stores information about the network
topology of a grid, we can include topology in our queries.
For example, we can find the shortest paths between a pair
of hosts, or all pairs shortest paths, or a group of hosts that
are tightly connected. For example, ”find n hosts with the
same operating system and with a total memory of b bytes,
all attached to the same router” would find tightly coupled
groups of machines that could be used as clusters.

select nondeterministically
h1.distip, h2.distip 

from 
hosts h1, hosts h2, iplinks links 

where 
h1.mem_mb+h2.mem_mb>1024 and
h1.os=h2.os and h1.insertid<>h2.insertid and
((h1.distip=links.src and
h2.distip=links.dest) or  
(h1.distip=links.dest and
h2.distip=links.src))

within 1 seconds;

Figure 14. Sample query to find pairs of di-
rectly connected hosts.

Hosts � �
NW NM NL SW SM SL

10K 8.915 -2.49 1 20 10 10 10 50
50K 8.915 -2.49 1 100 10 10 10 50
100K 8.915 -2.49 1 100 20 10 10 50

Figure 15. Parameters passed to GridG in
Topology related query datasets.

Figure 14 illustrates a very simple such query which tries
to find all pairs of hosts that are directly attached (at layer
3). The machines must have the same operating system and
must have a total memory of at least 1 GB.

To evaluate such a query, we must first have a network
topology. GridG network topologies are configured using
eight parameters. Six determine the hierarchical structure of
the generated Grid (these are passed to the underlying Tiers
generator [8]) and the remaining two determine the param-
eters of outdegree power law of Internet topology (our ex-
tension). The eight parameters are:

� � : constant in outdegree law
� �

: outdegree exponent
� NW : maximum number of WANs (currently only 1

supported)
� NM : maximum number of MANs per WAN
� NL : maximum number of LANs per MAN
� SW : maximum number of nodes per WAN
� SM : maximum number of nodes per MAN
� SL : maximum number of nodes per LAN

Figure 15 shows the parameters that were used to generate
the topologies used for this section. The hierarchy param-
eters are based on requirements for total number of hosts.
The values of � and � in the table are from a measured
router-level Internet topology discussed by Faloutsos, et
al [9].
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selection probability.

Figure 16 shows the average query time versus selection
probability for different size grids, namely, with 10,000,
50,000 and 100,000 hosts. Figure 17 shows the average
result set size for the same parameters. For this range of
selection probabilities, query time increases approximately
linearly with selection probability, while the result set size
increases slightly faster.

These figures provide more evidence that it is possible to
use selection probability to trade off between result set size
and query time for queries about grids with typical topolog-
ical and memory size distributions.

6 Time-bounded queries

The evaluation of the previous section showed that selec-
tion probability can be used to trade off between the running
time of a query and the number of results returned, and that
the result set would vary from query to query. However,
as described in Section 4, nondeterministic queries in RGIS
are also time-bounded. RGIS implements these deadlines
using three techniques, although this part of the system con-
tinues to evolve.

The first technique is hard-limiting. The query man-
ager/rewriter starts the query as a child process or thread.
The child is then allowed to run until the deadline is ex-
ceeded. If it completes before that time, it returns the re-
sult set to the parent which returns them to the caller. If it
runs out of time, it is killed and no result set is returned.
Hard-limiting can be used in conjunction with the other
techniques.

The second technique is climbing. Here, we initially run
the query with a very small selection probability. If no re-
sults are returned, the probability is doubled and the query
is run again. This happens iteratively until either the dead-
line is exceeded or a non-null result set is available. Notice
that because climbing always issues another query if there
is time left, it may overshoot the deadline.

The third technique is estimation. Estimation is similar
to climbing except that we predict the next query time from
the previous query times and then only issue the next query
if there is sufficient time remaining. Hence, it is far less
likely to overshoot the deadline. Predicting query time in
general is a complicated problem that could involve hard-
ware configuration modeling, scheduler modeling, model-
ing of the database engine, and query analysis. Surprisingly,
predicting query time from previous instances of a nonde-
terministic query run with lower selection probabilities ap-
pears to be easier to solve.

We studied several functions (linear, power, polynomial,
exponential) for mapping from selection probability to run-
ning time. Degree two polynomials worked best for the
queries described in the previous section. In our implemen-
tation, we monitor each query’s time and selection proba-
bility. After the first query, we estimate the second query
time to be the same as the first. After the first two queries,
we do a degree one Lagrange interpolation to estimate the
third query time. For the fourth and further queries, we es-
timate the next query time by applying a degree two La-
grange interpolation polynomial to the previous three query
times. Hence, after the first query, we have some model that
maps from selection probability to query time. We then use
that model to predict if we still have enough time to do next
query. If we don’t, we terminate. Figure 18 shows this pro-
cess for the two host query described in the next paragraph,
comparing the predicted and actual iterative query times.
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Figure 18. Prediction accuracy in estimation.

Because no time limit is supplied, the query runs until the
selection probability approaches one. This prediction algo-
rithm works very well for the two and four host queries and
other similar joins, but has difficulties with larger joins.

Figure 19 illustrates the performance of these different
techniques for a sample query. The query looks for two
hosts with a combined total of 600 GB of main memory in
a 50,000 host database. Such a combination is very rare,
but possible, hence the running time would be quite high
for a deterministic version of the query. The only differ-
ence between (a), (b), and (c) is the deadline, 1.2, 1.5, and
60 seconds, respectively. Each query is run five times. The
Figure illustrates the average, minimum, and maximum run-
ning time. Clearly, it is possible to keep the running time
close to the deadline using the three techniques. This is also
the case for queries that are allowed to run longer, and for
queries involving a larger number of hosts. Surprisingly,
hard-limiting can lead to missing the deadline by about 0.2
seconds in our system, and this delay is constant in all our
experiments. This is largely because terminating a query
process can be expensive. Estimation proves effective for
four host queries, but has greater difficulty for eight host
queries. Currently, we combine hard-limiting with estima-
tion for eight-way and higher joins.

We are also considering a more complex technique in
which we derive an analysis query from the user query. The
analysis query essentially tests the distribution of signifi-
cant attributes (e.g., the host memory for our examples) in
the input tables, and then estimates the likelihood of these
attributes coinciding, assuming that they are randomly dis-
tributed. The selection probability would then be set suffi-
ciently higher than this number to insure that a row will be
returned with high likelihood. The query would then be run
until what is left of the time limit is past.
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Figure 19. Initial evaluation of techniques for
time-bounding nondeterministic queries.

7 Conclusions

We described the RGIS relational grid information ser-
vice system, focusing on nondeterministic queries, the
RGIS mechanism for limiting the running time of queries
and their load on the RGIS server. Nondeterministic queries
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are implemented using a combination of query rewriting,
schema extensions, indices, and randomness. No changes to
the RDBMS are needed. We evaluated the performance of
our implementation, populating our database with networks
as large as five million hosts. The evaluation showed that
a meaningful tradeoff between query processing time and
result set size is possible using nondeterministic queries,
and that we can use that tradeoff to keep query running
time largely independent of query complexity. We then dis-
cussed three techniques that we use to time-bound nonde-
terministic queries and evaluated their performance.

The next major step for RGIS is the integration of
the content delivery network scheme for loose replica-
tion of RGIS servers described in Section 3 and an eval-
uation of its effectiveness. We hope to have a re-
lease of RGIS available soon at the following URL:
http://www.cs.northwestern.edu/ � urgis.
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