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Abstract

Recently, size-based policies such as SRPT and FSP have
been proposed for scheduling requests in web servers. SRPT
and FSP are superior to policies that ignore request size, such
as PS, in both efficiency and fairness, given heavy-tailed ser-
vicetimes. However, a central assumption that is usually made
in implementing size-based policiesin a web server is that the
service time of a request is strongly correlated with the size
of the file it serves. By collecting web server trace data taken
from the logs of modified Apache web servers, this paper re-
veals that the correlation between service time and file size
can be quite low, and shows how the performance of SRPT
and FSP can be dramatically affected by the weak correla-
tion via trace-driven simulations. In response, we propose
and evaluate domain-based scheduling, a simple technique
that better estimates connection times by making use of the
source |P address of the request. Domain-based scheduling
improves SRPT and FSP performance on web servers, bring-
ing the performance benefits of these scheduling polices even
to those regimes where the correlation between file size and
servicetimeislow.

1 Introduction

In a web server, requests continuoudly arrive to be
serviced. A reguest requires a certain servicetime to be
completed, a time whose components include the CPU,
the disk, and the network path. A request is queued
whenit arrives and remainsin the system until it is com-
plete, the total time from arrival to completion being the
sojourn time or response time. Scheduling policies de-
termine which requests in the queue are serviced at any
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point in time, how much time is spent on each, and what
happens when a new request arrives. Common goals of
the scheduling policy are to minimize the mean sojourn
time (response time of the request), the average slow-
down (the ratio of its response time to its size), and to
behave fairly to all requests.

Many policies are possible. First Come First Served
(FCFS) is anon-preemptivepolicy in which the requests
are run to completion in the order in which they were
received. A more common policy is Processor Shar-
ing (PS), which is preemptive. In PS all requestsin the
gueue are given an equal share of the web server’s atten-
tion. Generalized Processor Sharing (GPS) generalizes
PS with priorities. Often, FCFS can be combined with
PS or GPS, with FCFS dispatching of requests from the
gueue to a pool of processes or threads that are collec-
tively scheduled using PS or GPS. These policesignore
the service time of the request.

Recently, size-based scheduling policies, those that
incorporate the service time of the request into their
decisions, have been proposed for use in web servers.
Harchol-Balter, et a, have proposed the use of the Short-
est Remaining Processing Time (SRPT) scheduling pol-
icy in web servers [8, 18], showed how to incorporate
it into actual implementations [18], and proved that the
performance gains of SRPT usually do not come at the
expense of large jobs [8]. In other words, SRPT is fair
with heavy-tailed job size distributions. Gong, et a fur-
ther investigated the fairness issues of SRPT through
simulation [16] and proposed two hybrid SRPT schedul-
ing policies [17] to trade off the fairness with perfor-
mance. The Fair Sojourn Protocol (FSP) is a modified
version of SRPT that has been proven to be more ef-
ficient and fair than PS given any arrival sequence and
service time distribution [14].

In the implementation of size-based polices such as
SRPT and FSP on a web server, the service time of the
request is needed. The common assumption is that the
service time is the size of the file being served, as this



isvery easy to discover when the request entersthe sys-
tem. More broadly, the assumption is that the service
timeis strongly correlated to the file size. In this paper,
we examine the validity of this assumption, and the im-
pact that the degree of correlation between file size and
service time has on the performance of SRPT and FSP.

To evaluate this impact, we developed a simulator
that can support PS, SRPT, and FSP in both M/G/1/m
and G/G/n/m. The simulator operates on a trace of
request arrivals, which can come either from an aug-
mented Apache [1] web server log, or from a trace gen-
erator. The trace contains the request arrivals, the file
sizes, and the actual service times in microseconds. We
use traces that we have captured on our department-level
web server, and traces captured by others onweb caches.

In our earlier work [20], we showed that for the met-
rics of mean response time and slowdown, the perfor-
mance of SRPT and FSP are highly dependent on the
correlation (Pearson’s R [6]) between estimated and ac-
tual job size, and can fall well below that of PSforlow R
values. Effectivejob size estimatorsare critical to apply-
ing size-based scheduling policies. This paper focuses
on applying size-based scheduling in web servers when
the correlation R between file size and service time is
low. We first study how the performance of thefile size-
based policies (SRPT-FS, FSP-FS) diverges from their
ideal versions (SRPT, FSP) as we increase the load on
the web server. We then propose a better estimator and
evaluateit viatrace-driven simulations.

We study G/G/n/m in addition to M/G/1/m because
previousresearch [12, 26] has shownthat HTTP arrivals
do not form a Poisson process. HTTP document trans-
missions are not entirely initiated by the user: the HTTP
client will automatically generate a series of additional
requests to download embedded files, thus resulting in
a more bursty process. Previous work [12] pointed out
that the aggregated interarrival times of HTTP requests
can be modeled with aheavy-tailed Weibull distribution.

There has been significant work on the G/G/n queu-
ing model. However, we are aware of no analytical
results on G/G/n/m for SRPT or FSP scheduling in
regimes where interarrival times and service times are
heavy-tailed. Therefore, the work we describe in this
paper is based on measurement and simulation.

Using our infrastructure, and measured and synthe-
sized trace data, we address the following questions:

1 What isthe actual degree of correlation between file size

and service timein practice? (Section 2)
2 What is the performance of SRPT, FSP and PS under
typical real workloads? (Section 3)

3 Isthere asimple and low-overhead estimator for service

time that would make SRPT and FSP on M/G/1/m and

Policy Description
PS Processor Sharing
FSP Ideal Fair Sojourn Protocol
(exact service times)
SRPT Ideal Shortest Remaining Processing Time

(exact service times)

FSP-FS  Filesize-based FSP
(file size as service time)
SRPT-FS  File size-based SRPT
(file size as service time)
FSP-D Domain-based FSP
(domain-estimated service times)
SRPT-D  Domain-based SRPT

(domain-estimated service times)

Figure 1. Scheduling policies.

G/GIn/m perform better? (Section 4)

It isimportant to point out that our resultsin addressing
guestions 2 and 3 are largely independent of our results
for question 1, and the algorithm we developin response
to question 3 provides benefitsto SRPT and FSP over a
wide range of possible answers to question 1.

Our definition of service time is the time needed to
send all of requested data in the absence of other re-
guests in the system. Our measurements show that the
assumption that file size and service time are strongly
correlated is unwarranted—the correlation is, in fact, of-
ten rather weak. We believe that the reason for this phe-
nomenonis path diversity to different clients. Evenif for
every specific request, the servicetimet; = L + N/B,
where N is the number of bytes in the transfer and L
and B are the latency and bandwidth of the path, every
path will likely have a different L and B. In aggregate,
thiswill mean that ¢ will be weakly correlated with V.
Notice that this explanation does not requirethat the bot-
tleneck for file transfer be the network. Path diversity is
simply afact of life of alarge network.

Our trace-driven simulations show that the perfor-
mance of file size-based SRPT and FSP is strongly &f-
fected by the weak correlation between file size and ser-
vice time reflected in our web server traces. In fact, R
isindeed low enough that both file-size based SRPT and
FSP perform worse than PS. The job size distribution,
arrival process and load decide the threshold value of R
that SRPT and FSP need to outperform PS.

These results led us to believe that a better estimator
for service time was needed. We refer to our estimator
as adomain estimator, and the use of our domain-based
estimator with a size-based scheduling policy such as
SRPT or FSP as domain-based scheduling. The basic
ideais to use the high order k bits of the source IP ad-



Model Description

M/G/1/m  Poisson arrival process; Single server;
General service time distribution;
Limited queue capacity m.

G/G/n/m  General arrival process (Pareto and Weibull);

General service time distribution;
n servers ; Limited queue capacity m

Figure 2. Queuing models.

dress to assign the request to one of 2% domains. For
each domain, we estimate the service rate (file size di-
vided by service time) based on all previous completed
transfers to the domain. The service rate is then used to
estimate the service time of a new reguest based on its
file's size. Based on our traces, thereis astrong correla-
tion between these estimates and the actual servicetimes
that grows with the number of bits &k used. In short, by
choosing k& appropriately, we can create enough corre-
lation to make SRPT and FSP perform well. Surpris-
ingly, k can be kept relatively small, making the imple-
mentation of domain-based scheduling feasible and fast.
Throughout the paper, we refer to the scheduling poli-
ciesaslisted in Figure 1, and refer to the queuing models
used aslisted in Figure 2.

2 Filesizeand servicetime

Size-based SRPT scheduling appeared in digital
communication networks research in 1983 [10]. In this
context, the service time was taken to be equal to the
transmission time of amessage, which is proportional to
the length of the message stored in the node buffers. A
web server serving static requests appears superficially
similar in that it transmits files to the client. However,
there are differences. Firgt, inthedigital communication
network context, the work represented by the service
time is pushing the bits of the message onto the wire,
while for the web server context, the work involves end-
to-end cooperation along an entire shared heterogeneous
path. Although most transfersare likely to be dominated
by the bottleneck bandwidth in the path and the latency
of the path, there are multiple possible bottlenecks along
the path and they can vary with time due to packet |osses
and congestion. Second, the disk(s), memory system(s),
and CPU(s) of the web server and the client are also po-
tential bottlenecks. These complexities suggest that the
servicetime of arequest may not be proportional or even
well correlated with the size of thefileit serves.

Thereare several possibledefinitionsfor servicetime
in the web server context. For example, we could fo-

cus on a bottleneck resource on the server, such as the
CPU, and define the service time as the total CPU time
needed to execute the request. Alternatively, we could
treat the CPU, disk, and network link of the server asa
single resource and consider the total non-blocked time
of arequest onit. We could also take a holistic view and
consider it the time spent on the bottleneck resource on
the path from server to client. We take the position that
the service time of arequest is the time that the combi-
nation of server, client, and network would take to finish
the request given no other requests in the whole end-
to-end system (no load on any server resource). In the
following sections, we use this definition and argue that
our measurement methodology measuresit by verifying
that the loads on the resources of the end-to-end system
that we measure are miniscule.

To measure correlation between file size and ser-
vice time we use the correlation coefficient (Pearson’s
R) [6]. To answer the question posed by this sec-
tion, we examine R values for alarge trace acquired by
us from a typical web server, as well as 70 traces col-
lected from web cache servers. The main conclusion is
that R can vary considerably from server to server, and
can be quite small. R = 0.14 for our web server trace,
while the web caches have R evenly distributed in the
range [0.12,0.61]. In subsequent sections, we use our
web server trace to drive our simulation. However, we
also use synthetically generated traces in which we can
control R directly. While many web server traces are
available, none that we could find record the actual ser-
vice time of the request and thus are not useful for the
purposes of our study.

2.1 Measurement on atypical web server

We modified the code of the Apache log module so
that it recordsthe response time of each request with mi-
crosecond granularity (using the IA32 cycle counter to
mesasure time). Under extremely low load conditions, as
we document bel ow, thistimeis equivalent to the service
time according to our definition above.

We deployed the module on our department-level
web site. We collected data from September 15, 2003 to
October 19, 2003. Thistraceincludesapproximately 1.5
million HTTP requests, among which less than 2% are
dynamic PHP requests that collectively took less than
1% of the total service time recorded. > 98% of our
requests and > 99% of the service timein the trace are
for static pages. Hence, our web server is dominated by
static web content. our results are comparable to previ-
ous work [21, 19, 18] that claims static content domi-
nates web traffic. The requests originated from 110 “/8”
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IP networks, 7220 “/16” IP networks and 31250 “/24”
IP networks spread over the world. We claim that this
server istypical. However, the conclusions of this paper
are also supported by other measured traces and gener-
ated traces.

The bottleneck resource of a request in this trace is
hardly ever the CPU of the server. The web server isa
dual processor Pentium IV Xeon machine running Red
Hat Linux 7.3. CPU load is defined as the exponentially
averaged number of jobsin the run queue of the OS ker-
nel scheduler (the Unix load average), The machine can
serve two CPU intensive applications with full CPU cy-
cles. Figure 3 plots the complementary distribution of
the CPU load during the period of trace collection. This
distribution can be modeled with a exponential distribu-
tionwith R? ~ 0.96. Figure 3 showsthat the probability
P[CPUload > 2] is minuscule. The memory system
is also clearly not a bottleneck based on these results as
significant cache stalls would show up asincreased |oad.

The bottleneck resource of arequest in this trace is
hardly ever the disk system of the server. The ma
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Figure 5. Storage bandwidth, KB/sec.

chine'sfile systems reside on a NFS-mounted (over pri-
vate gigabit Ethernet SAN) RAID 5 storage server. Fig-
ure 4 shows the complementary distribution of the stor-
age system reads during the period of thetrace. Thedis-
tribution can be modeled with a exponential distribution
with R? closeto 0.99.

We benchmarked the storage system using Bonnie,
which is awidely used utility that measures the perfor-
mance of Unix file system operations that an application
sees[2]. Bonniereads and writesa 100 M B file (marked
uncacheable) by character or by block. Both sequen-
tial and random access are tested. Random block and
character throughput give us upper and lower bounds
on the performance of file system 1/0 that Apache sees.
We also wrote our own benchmark (WebRead) to get
a sense of the typical read performance that Apache
sees. WebRead simply reads the files in our access log,
in order, as fast as possible. Not surprisingly, the We-
bRead performanceisin between the character read and
block read benchmark given by Bonnie. Bonnie and We-
bRead measurements are shown in Figure 5. From Fig-
ures 4 and 5, it is clear that in our trace encountering
a read throughput exceeding the WebRead throughput
< 0.001. No recorded read throughput was larger than
Bonnie's block read benchmark. Notice also that the
highest throughputs seen are lower than the 125 MB/s
throughput limit of the Ethernet SAN, hencethe SAN is
also not a bottleneck.

As it is clear that the CPU, memory, and disk sys-
tems are not bottlenecks, if there is any bottleneck it is
in the network or the client. Based on many earlier mea-
surements of load behavior on clients that indicate their
resources spend much of their timeidle[22, 13], itisex-
tremely unlikely for aclient to bethe bottleneck. If there
is any bottleneck, it is in the network path to the client,
which agrees with earlier work [24, 18] that showed that
the network is the bottleneck for the web servers serving
mainly static content. Given the low rate of requests,
it is highly likely that a single request would perform
similarly to the requests in our trace. Hence, the high-
resolution response time that we record in the Apache
log is a close approximation of the service time as de-
fined above. Obvioudly, there are situations where CPU
or disk can become bottlenecks, such asin virtual server
configuration in which one physical server hosts several
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web sites, or on a web server that hosts database-based
dynamic web content.

Given the provenance of the trace, we can now use it
to answer our question. Figure 6 () is alog-log scatter
plot of file size versus servicetime. Visually, we can see
hardly any correlation between file size and servicetime.
File transfer timesvary over several orders of magnitude
with same file size. Over the entire 1.5 million requests
inthetrace, we find that R isa very weak 0.14.

Within a domain, R is larger. We define precisely
what we mean by adomain and connect it with CIDR in
Section 4. Here, smply consider it as a single network
that may be recursively decomposed into subnetworks.
For example, Figure 6 (b) is alog-log scatter plot of file
Size versus service time for reguests originating with a
single“/16” IP network, wherethe network addressis 16
bits. R = 0.25 for this situation. As the domain grows
smaller (has fewer |P addresses, or more bits represent-
ing its network address), R grows larger. For example,
if we focus on a particular “/24” LAN subnet (24 bit
network address) that is contained within the previous
network, R = 0.39.

We speculate that the reason for this behavior is that
network bandwidth heterogeneity from the server to the
clients of a domain decreases as the size of the domain
decreases. This provides a different, but compatible,
explanation for earlier findings [8] that file size-based
SRPT scheduling can decrease mean sojourn time by a
factor of 3-8 over PSinaLAN for load higher than 0.5,
but can only decrease the mean sojourn time by 25% on
the WAN.

We are actively acquiring additional traces, but this
is difficult because web server modifications are neces-
sary to acquire fine grain service times. Many avail-
able traces, such as those from the Internet Traffic
Archive[3], our ingtitution’s other web servers, and oth-
ers provide only file size, not service time and thus are
unsuitable for our work. We have, however, acquired

many traces from web caches, described next, and built
a trace generator that allows us to control R as well as
thedistributionsof servicetime and interarrival time, de-
scribed later.

2.2 Measurement on web caches

We examined 70 sanitized access logs from Squid
web caches, made available through the ircache site [4].
These traces contain actual fine grain service times (not
response times) in addition to file sizes. Internet object
caching stores frequently requested I nternet objects(i.e.,
pages, images, and other data) on caches closer to there-
quester than to the source. Clients can then use alocal
cache as an HTTP proxy, reducing access time as well
as bandwidth consumption.

Squid is ahigh-performance proxy caching server for
web clients. Unlike traditional caching software, Squid
handlesall requestsin asingle, non-blocking, I/O-driven
process[5], making it very easy to determinethe service
time of arequest. Squid issimilar to aweb server in that
it also accepts HT TP requests and sends back requested
files, but it is different in that the Squid servers form
a overlay network that uses the Internet Cache Proto-
col (ICP) to perform server selection for web clientsand
load balancing among the cache servers [28]. A client
sees that it typically receives a reply from the nearest
cache server, while from the Squid cache servers' points
of view, the Internet is divided into several regionswith
each cache server serving requests for aregion.

Because a single Squid cache serves clients largely
from one region of the Internet, the bandwidth hetero-
geneity to the clientsislikely to belessthan that seen by
aweb server, which services clientsregardless of region.
This, webelieve, should lead to larger R being measured
on Squid caches than on web servers. The partitioning
of the network as seen from the web server into domains
that we describein Section 4 builds on this observation.

While we cannot (and do not) use web cachetraces as
proxies for web server traces, it is instructive that R on
the caches is aso rather weak. Figure 7 shows a com-
plementary distribution plot of the R values in the 70
traces. The traces were collected from 10 squid web
cache servers over 7 days Each trace contains from 0.1
to 1.1 million requests. The smallest R = 0.12, while
the largest R = 0.61. The mean is 0.34 with standard
deviation 0.13. Given that we expect that R for web
serverswill be lower than R for web caches by the rea-
soning in the previous paragraph, that measured Rs on
web caches are low suggests that R on web servers is
likely to be low as well.
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In combination with the low R seen on our web
server trace, we believe that we can now answer the
guestion posed by this section in the negative: The cor-
relation between request file size and service time on
web serversisweak.

3 Correlation and performance

We have seen that request servicetime onweb servers
and caches is not strongly correlated with request file
size. Here, weinvestigate, viasimulation, how thisweak
correlation (R) affects the performance of size-based
scheduling policies (SRPT and FSP, where actual ser-
vice timeis known a priori, and SRPT-FS and FSP-FS,
where the file size is used as the service time) and com-
pare with a size-oblivious policy (PS). Our metrics are
the mean sojourn time (response time) and mean queue
length. In our earlier work [20], we found that for these
metrics the performance of non-ideal SRPT and FSP
(SRPT-FS and FSP-FS here) is dramatically affected by
R, faling below that of PSfor low R vaues, such aswe
encountered in the previous section. Here, we show how
the performance of SRPT-FS and FSP-FS diverge from
theideal as afunction of the load on the web server.

3.1 Simulator

Our simulator supports both M/G/1/m and G/G/n/m
gueuing systems. It is driven by atrace in which each
request contains the arrival time, file size, and service
time. In addition to the web server trace described in
the previous section, our simulator can also support syn-
thetic traces with many interarrival time and file size /
service time distributions. The correlation between file
size and service time in a synthetic trace can also be di-
rectly controlled. More detail is available [20].
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3.2 Simulation with web server trace

Here we consider the performance of SRPT, SRPT-
FS, FSP, FSP-FS, and PS on the web server trace (R =
0.14) described in Section 2.1. The mean service time
is 1250 microseconds. The scheduling policies are de-
scribed in Figure 1. Note that although our web server
trace represents very low load, here we vary the load in
the system by controlling the arrival process of the re-
quests represented in the trace. We make use of Poisson
arrivals, Pareto arrivals, and Weibull arrivals and control
their mean rate in order to control the load. Load control
isimportant, because, aswe discussed in Section 2.1, the
load captured in the trace is rather low. The time units
are microseconds throughout the rest of the paper. Each
simulation is repeated 20 times.

First, we consider G/G/1/m (Job interarrival has a
heavy-tailed Pareto distribution, file sizes and service
times as in the trace). Figure 8 shows the mean so-



journtimes of different scheduling policieswith increas-
ing load, while Figure 9 shows the mean queuelength of
different scheduling policieswith increasing load on the
gueue. In both figures, ideal SRPT and FSP perform
very well and amost identically. However, SRPT-FS
and FSP-FS both perform quite poorly, and their per-
formance diverges dramatically from their ideal perfor-
mance with increasing load. SRPT-FS and FSP-FS per-
form worse than SRPT and FSP in all our simulations.

For a queue with unlimited queue capacity, the mean
sojourn time and queue length tend to be infinity if the
load is over unity, and therefore it is meaningless to
present mean sojourn time and queue length. Our simu-
lator uses a finite queue capacity to better match imple-
mentations. The server will begin to reject jobs when it
is overloaded for some period of time (when the queue
isfull). Hence, both mean sojourn time and mean queue
length are meaningful; they represent the behavior of the
server under transient overload.

We have also investigated a Weibull arrival process
and Poisson arrival process, where the interarrival times
of requests in the trace are drawn from a Weibull dis-
tribution and exponential distribution respectively. The
results are similar to those for the Pareto arrival process
shown earlier.

Our simulations show that the performance of SRPT-
FSand FSP-FS SRPT and FSP where request file size
isused asrequest servicetime, is largely affected by the
weak correlation R between file size and service time.
With such weak correlations as in our web server trace
and some of our web cache traces, PS can actualy be
preferableto size-based policies. However, our previous
work [20] demonstrates that even small increases in R
can dramatically increase the performance of non-ideal
SRPT and FSP. Hence, we turned to developing a better
estimator of servicetime.

4 Domain-based scheduling

We have found that request file size and service time
are weakly correlated and that the performance of size-
based scheduling policies are strongly dependent on the
degree of this correlation. Given these results, a natural
question is whether there is a better service time estima-
tor than file size, one whose estimates are more strongly
correlated with actual service time. Such an estimator
must also be lightweight, requiring little work per re-
quest. For this reason, we cannot use active probing
techniques. Instead, we explore the web logs and use
past web requests as our probes.

4.1 Statistical stability of the Internet

Domain-based scheduling relies on the Internet being
statistically stable over periodsof time, particularly from
the point of view of the web server. Fortunately, thereis
significant evidence that thisis the case.

Routing stability: Paxson [25] proposed two metrics
for route stability, prevalence and persistency. Preva
lence, which is of particular interest to us here, is the
probability of observing a given route over time. If a
route is prevalent, then the observation of it allows us
to predict that it will be used again. Persistency is the
frequency of route changes. The two metrics are not
closely correlated. Paxson’s conclusions are that Inter-
net paths are heavily dominated by a single route, but
that the time periods over which routes persist show
wide variation, ranging from seconds to days. However,
2/3 of the Internet paths Paxson studied had routes that
persisted for days to weeks. Chinoy found that route
changes tend to concentrate at the edges of the network,
not in its “backbone” [11]. Barford, et al measured the
web performance in the wide area network and found
that the routes from/to the client to/from a web servers
was asymmietric, but very stable[9].

Spatial and temporal locality of end-to-end TCP
throughput: Balakrishnan, et a analyzed statistical
models for the observed end-to-end network perfor-
mance based on extensive packet-level traces collected
from the primary web site for the Atlanta Summer
Olympic Games in 1996. They concluded that nearby
Internet hosts often have almost identical distributions
of observed throughput. Although the size of the clus-
ters for which the performance is identical varies as a
function of their location on the Internet, cluster sizes
in the range of 2 to 4 hops work well for many regions.
They also found that end-to-end throughput to hosts of -
ten varied by less than afactor of two over timescaleson
the order of many tens of minutes, and that the through-
put was piecewise stationary over timescales of similar
magnitude [7]. Seshan, et a applied these findings in
the development of the Shared Passive Network Perfor-
mance Discovery (SPAND) system [27]. Myers, et a
examined performance from a wide range of clients to
a wide range of servers and found that bandwidth to
the servers and server rankings from the point of view
of a client were remarkably stable over time [23]. Yin
Zhang, et al [29] found that three Internet path proper-
ties, loss rate, delay and TCP throughput show various
degrees of constancy and concluded that one can gener-
ally count on constancy on the time scale of minutes.



4.2 Algorithm

Although the Internet, web servers, and clients form
ahighly dynamic system, the stability we pointed out in
the previous section suggests that previous web requests
(the web server’s access log) are a rich history which
can be used to better estimate the service time of a new
request. We assume that after processing a request we
know (1) itsfile size, (2) the actual servicetime, and (3)
the IP address of the client. Collecting this information
issimpleand efficient. Our goal isto develop an efficient
estimator that uses a history of such requests, combined
with thefile size and | P address of the current request to
determine the likely service time of the current request.
The correlation R between the estimated service time
and the actual service time should be higher than the
correlation between file size and actua servicetime. R
must exceed a threshold in order for SRPT to perform
better than PS, and as R increases, the performance of
SRPT increases.

Classless Inter Domain Routing (CIDR) [15] was
proposed in 1993 as “a strategy for address assignment
of the existing |P address space with a view to conserve
the address space and stem the explosive growth of rout-
ing tablesin default-route-freerouters’. The CIDR strat-
egy has been widely deployed since 1993. “One major
goal of the CIDR addressing plan is to allocate Internet
address space in such a manner as to allow aggregation
of routing information along topologica lines’. Con-
sider a domain, a neighborhood in the network topol-
ogy. The broad use of CIDR implies that routes from
machines in the domain to a server outside the domain
will share many hops. Similarly, the routes from the
server to different machinesin the domain will also have
considerable overlap. This also means that the routes
will be likely to share the same bottleneck network link
and therefore have similar throughput to/from the server.
The smaller the domain, the more the sharing.

The aggregation of CIDR is along a hierarchy of
increasingly larger networks and is reflected in IP ad-
dresses. The first & bits of an |P address gives the net-
work of which the address is a part, the first £ — 1 bits
give the broader network that contains the first network,
and so on. We exploit this hierarchy in domain-based
scheduling, the algorithm of which is given below.

1 Usethe high order k bits of the client IP address to
classify the clientsinto 2* domains, where the k bitsare
treated as the domain address.

2 Aggregate past requests to estimate the service rate (or
representative bandwidth) for each domain. This can be
done with several estimators, but our experiments show
that the estimator Sg = g—t performs the best. Here Sg

R (correlation cofficient between actual service

O+——7—F 77T 71—
0 24 6 8101214161820222426283032

Bits used to define adomain

Figure 10. Rversus bits k£ defining domain.

isthe representative service rate, Fs isthe sum of the
reguested file sizes from the domain, and S; isthe sum
of the service times for these requests. Notice that
updating this estimate after a request has been processed
istrivial: simply add the request’sfile size and service
timeto F and S;, respectively (two reads, two adds,
two writes). For each domain, we store F and S;. An
array of these pairsis kept, indexed by the domain
address. Thetotal state sizeis 2°*! floating point
numbers.

3 For each incoming client request, the web server first
extracts the domain address, indexes the array and
computes Sk for the domain. It then estimates the
request’s servicetime as Testimate = Sf,—R where f; is
the request file size. The estimator requires alogical
shift, two reads, adivision, and a multiply. For a request
from a heretofore unobserved domain, which occurs
exactly once per domain, we simply use file size as the
estimate.

4 Apply asize-based scheduling policy such as SRPT
using the estimated service times. We suffix the
scheduling policy with “-D”: SRPT-D, FSP-D.

As we might expect, as domains become smaller (k
getslarger), predictive performanceincreases, at the cost
of memory to store the state. Figure 10 shows the rela
tionship between &, the number of bits used to define a
domain and the correlation R between the actual service
time and estimated service time. The figure is derived
from our web server trace. R jumpsto 0.26 with k& = 5
bits, beyond the threshold at which SRPT beginsto per-
form better than PS. Notice that this is a mere 32 do-
mains (state size of 256 bytes with 4 byte floats). After
k = 24 bits, there are only very small increases of R,
probably because at this point we have divided the In-
ternet into LANS, where each machineon a LAN shares
a common route to every other machine in the Internet,
and thus shares the same bottlenecks. The maximum R
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Figure 11. Mean sojourn time versus k for
web trace, G/G/1/m, Pareto arrivals with
a = 1.32 and bounds [84, 5 x 10°], load 0.88.

we were able to achieve was 0.704.
4.3 Performanceevaluation

To evaluate domain-based scheduling (SRPT-D and
FSP-D, aso see Figure 1), we use the methodology of
Section 3.2. We replay our web trace with Poisson,
Pareto, and Weibull arrivals to control load. We vary k,
the number of high-order bits we use to define adomain.

Figures 11 and 12 show the mean sojourn time and
mean queue length of al the scheduling policies with
heavy-tailed Pareto arrivals as a function of k. Notice
that PS, FSP, SRPT, FSP-FS, and SRPT-FS areflat lines.
PS ignores service time. FSP and SRPT have exact
knowledge of the service times (they represent the ideal
performance of these policies). FSP-FS and SRPT-FS
use file size as a proxy for service time (representing
current practice). Notice that as we increase the number
of bits k& used to define a domain, the performance of
SRPT-D and FSP-D first exceeds that of PS and finally
convergesto near theideal performance.

While SRPT-D’s performance increases continu-
ously, with diminishing returns, with increasing k, FSP-
D israther insensitive until £ = 16 to 24 bits, a which
point its performance jumps dramatically and comes
very close to SRPT-D’s. Since R doesn’t increase much
beyond k£ = 24 bhits, as we might expect, the perfor-
mance of SRPT-D and FSP-D plateaus. Similar conclu-
sions can bedrown for Poisson arrivalsand Heavy-tailed
Weibull arrivals.

Our performance evaluation of SRPT-D and FSP-D
demonstrates that better, practical estimators of service
time are possible and that they can dramatically im-
prove the performance of size-based scheduling policies
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Figure 12. Mean queue length versus k for
web trace, G/G/1/m, Pareto arrivals with
a = 1.32 and bounds [84,5 x 10°], load 0.88.

on web servers.

5 Conclusions and future work

This paper has made the following contributions.
First, we have (1) demonstrated that the assumption that
file size is a good indicator of service time for web
servers is unwarranted. File size and service time are
only weakly correlated. The implication is that size-
based scheduling policies that use file size, such as
SRPT-FS and FSP-FS are likely to perform worse than
expected. Next, using simulations driven by our web
server trace, we have (2) evaluated the performance of
SRPT-FS and FSP-FS and found that their performance
does indeed degrade dramatically due to the weak cor-
relation reflected in the trace. In response, we (3) pro-
posed, implemented, and evaluated a better servicetime
estimator that makes use of the hierarchical nature of
routing on the Internet and the history of past requests
available on the web server. We refer to SRPT and FSP
augmented with our domain-based estimator as SRPT-D
and FSP-D. The state size of our estimator is a param-
eter. Finally, we (4) found that, with a small state size,
SRPT-D can outperform PS, and with a practical state
size, SRPT-D can exhibit close to ideal performance.
FSP-D requires a significantly larger state size to per-
form close to itsideal. SRPT reacts very quickly to in-
creasingly accurate service time estimates.

Because the TCP connection (and disk) that arequest
uses can block, implementations of size-based schedul-
ing in web servers often use what we call back-filling.
An executing request that becomesblocked is preempted
in favor of a request with a larger number of bytes re-
maining to be handled—it is the non-blocked request



of smallest remaining size that is run, not the smallest
request. Our simulations do not model such a system.
However, as far as we are aware, there are no analytical
resultsfor size-based scheduling with blocking behavior
either, making it quite difficult to validate a simulator.
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