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Abstract. FatNemo is a novel scalable peer-to-peer multi-source multicast pro-
tocol based on the idea of fat-trees. In fat-trees the available bandwidth increases
as one moves up the tree, yielding a minimal mean and standard deviation of the
response time. For many-to-many multicast applications, such as video confer-
encing, this eliminates the bottlenecks inside the overlay network.
FatNemo organizes its members into a tree of clusters. Starting at the lowest tree
layer, peers can be members of multiple successive layers. Bandwidth capacity is
used to decide the highest layer a peer can participate in. The size of the cluster is
increased as we go up the tree. FatNemo relies on co-leaders to balance the load
and to increase its resilience to path and end host failures.
We present an evaluation of our protocol using simulation, comparing its per-
formance with that of alternative protocols (Narada, Nice and Nice-PRM). Our
results show that FatNemo not only minimizes the average and the standard de-
viation of the response time, but also handles end host failures gracefully without
suffering a performance penalty.

1 Introduction

High bandwidth multi-source multicast among widely distributed nodes is a critical
capability for a wide range of important applications including audio and video confer-
encing, multi-party games and content distribution.

Throughout the last decade, a number of research projects have explored the use of
multicast as an efficient and scalable mechanism to support such group communication.
Multicast decouples the size of the receiver set from the amount of state kept at any
single node and potentially avoids redundant communication in the network. However,
the limited deployment of IP Multicast [19, 20], a best effort network layer multicast
protocol, has led to considerable interest in alternate approaches that are implemented
at the application layer, using only end-systems [17, 28, 24, 42, 13, 3, 12, 43, 56, 39, 47].

In an end-system multicast approach participating peers organize themselves into an
overlay topology for data delivery. Each edge in the topology corresponds to a unicast
path between two end-systems or peers in the underlying Internet. All multicast-related
functionality is implemented at the peers instead of in the routers of the underlying
network. The goal of the multicast protocol is to construct and maintain an efficient
overlay for data transmission.

Among the end-system multicast protocols that have been proposed, tree-based sys-
tems have proven to be highly scalable and efficient in terms of physical link stress, state



and control overhead, and end-to-end latency. However, normal tree structures have two
inherent problems: (i) resilience:they are highly dependent on the reliability of non-
leaf nodes, and (ii) bandwidth limitations:they are likely to be bandwidth constrained1

as bandwidth availability monotonically decreases as one descends into the tree.
Resilience is particularly relevant to the application-layer approach, as the trees here

are composed of autonomous, unpredictable end hosts. The high degree of transiency of
the hosts2 has been pointed out as one of the main challenges for these architectures [6].

The bandwidth limitations of normal tree structures is particularly problematic for
multi-source, bandwidth intensive applications. For a set of randomly placed sources in
a tree, higher level paths (those nearer the root) will become the bottleneck and tend
to dominate response times. Once these links become heavily loaded or overloaded,
packets will start to be buffered or dropped.

We have addressed the resilience issue of tree-based systems in previous work [7]
through the introduction ofco-leadersand the reliance ontriggered negative acknowl-
edgements(NACKs). In this paper we address the bandwidth limitations of normal tree
overlays.

Our approach capitalizes on Leiserson’s seminal work on fat-trees [31]. Paraphras-
ing Leiserson, a fat-tree is like a real tree in that its branches become thicker the further
we get from the leaves. Because its links become fatter as one moves closer the root, a
fat-tree overcomes the “root bottleneck” of a regular tree. Figure 1 shows a schematic
example of a binary fat-tree. We propose to organize participant end-systems in a tree
that closely resembles a Leiserson fat-tree by dynamically placing higher degree nodes
(nodes with higher bandwidth capacity) close to the root and increasing the cluster sizes
as one ascends the tree.

This paper makes three main contributions:

– We introduce the use of Leiserson fat-trees for application-layer multi-source mul-
ticast, overcoming the inherent bandwidth limitations of normal tree-based overlay
structures.

– We describe the design and implementation ofFatNemo, a new application-layer
multicast protocol that builds on this idea.

– We evaluate the FatNemo design in simulation, illustrating the benefits of a fat tree
approach compared to currently popular approaches to application-layer multicast.

The remainder of this paper is structured as follows. We present some background
and review related work in Section 2. Section 3 outlines the FatNemo’s approach and
presents its design and operational details. In Sections 4 and 5, we examine FatNemo’s
ability to build an efficient, bandwidth-optimized overlay network for application layer
multi-source multicast. We conclude in Section 6 and outline some future work direc-
tions.

1 The access link of a end system becomes its bandwidth bottleneck, thus we can model the
bandwidth capacity as a property of the end-system.

2 Measurement studies of widely used application-layer/peer-to-peer systems have reported me-
dian session times ranging from an hour to a minute [9, 25, 44, 15].



A

E F

G

B DC

Bottleneck node

Cap. 30 Kbps

Cap. 20 Kbps

Cap. 25 KbpsCap. 5 Kbps

Cap. 10 Kbps

Cap. 5 KbpsCap. 5 Kbps

(a) Normal tree.

A

F

G

B DE

C

Cap. 30 Kbps

Cap. 20 Kbps

Cap. 5 KbpsCap. 5 Kbps Cap. 5 Kbps

Cap. 25 Kbps

Cap. 10 Kbps

(b) Fat-tree.

Fig. 1. Two binary trees with nodesA andB as sources, publishing at 5Kbps each. On the left,
a normal binary tree where nodeE becomes the bottleneck, resulting on a reduced (dash line)
outgoing stream quality. On the right, a fat-tree with higher capacity nodes placed higher in the
tree.

2 Related Work

We first discuss the idea of fat trees in the context of parallel architectures, where they
were first introduced. FatNemo builds on research in live streaming and file distribution
and we discuss each in turn.

The concept of fat-trees, first introduced by Leiserson [31], has been successfully
applied in massively parallel systems, such as thinking machine CM-5 [32] and Meiko
CS-2 [26]. They have also been applied in high performance cluster computing, for
example, Infiniband architecture [27] can support a fat-tree topology.

All peer-to-peer or application-layer multicast protocols organize the participating
peers in two topologies: a control topology for group membership related tasks, and
a delivery tree for data forwarding. Available protocols can be classified according to
the sequence adopted for their construction [2, 17]. In a tree-first approach [24, 28, 42],
peers directly construct the data delivery tree by selecting their parents from among
known peers. Additional links are later added to define, in combination with the data
delivery tree, the control topology. With a mesh-first approach [17, 13], peers build a
more densely connected graph (mesh) over which (reverse) shortest path spanning trees,
rooted at any peer, can be constructed. Protocols adopting an implicit approach [3, 12,
43, 56] create only a control topology among the participant peers. Their data delivery
topology is implicitly determined by the defined set of packet-forwarding rules.

Numerous protocols have been proposed to address the demand for live streaming
applications, we will describe the most important of them. The first end-system multi-
cast protocol was Narada [16], a multi-source multicast system designed for small to
medium sized multicast groups. The peers are organized into a mesh with fixed out-
degree. Every peer monitors all other peers to detect host failures and network parti-
tions. The multicast tree is built on top of the mesh for every sender. The tree construc-
tion algorithm does not account for cross traffic and therefore a powerful link is likely
to be used by many multicast links, which limits the efficiency of the multicast system.



In contrast, FatNemo uses crew members to share the forwarding load, thus relaxing
the burden on a single high bandwidth path.

Overcast [28] is a single-source multicast system. It constructs a distribution tree
by probing the available bandwidth between peers with a probe packet of 10 KB size.
This probe packet is too short to accurately reflect the bandwidth of high bandwidth
paths [28]. The multicast tree is constructed by moving a peer as far away from the
source without reducing its available bandwidth. This is a local optimization for single-
source multicast. In contrast, FatNemo is a multi-source multicast system, which uses
a global optimized fat-tree construction algorithm and measures available bandwidth
more accurately for high bandwidth paths.

Banerjee et al. [3] introduce Nice and demonstrate the effectiveness of overlay mul-
ticast across large scale networks. The authors also present the first look at the ro-
bustness of alternative overlay multicast protocols under group membership changes.
FatNemo adopts the same implicit approach, and its design draws a number of ideas
from Nice such as its hierarchical control topology. FatNemo introduces co-leaders to
improve the resilience of the overlay and adopts a periodic probabilistic approach to
reduce/avoid the cost of membership operations.

A large number of research projects have addressed reliable and resilient multicast
at the network layer [41, 50, 53, 40, 34, 23]. A comparative survey of these protocols is
given in [33, 46]. Like many of them, FatNemo relies on reactive techniques to recover
from packet losses. STORM [51] uses hierarchical NACKs for recovery: NACKs are
sent to parents (obtained from a parent list) until the packet is successfully recovered
or deemed obsolete. In the case of FatNemo, NACKs are used only to request missing
packets from neighbors who indicated3 to cache them locally.

In the context of overlay multicast, a number of protocols have been proposed aim-
ing at high resilience [4, 11, 47, 39]. ZigZag [47] is a single-source P2P streaming pro-
tocol. Resilience is achieved by separating the control and data delivery trees at every
level, with one peer being held responsible for the organization of the sub-tree and a
second one dealing with data forwarding. In the presence of failures, both peers share
repair responsibilities. In FatNemo, the forwarding responsibility of a peer is shared
among its crew members and its repair algorithm is fully distributed among cluster
members. PRM [4] uses randomized forwarding and NACK-based retransmission to
improve resilience. In contrast, FatNemo relies on the concept of acrewand opts only
for deterministic techniques for data forwarding. SplitStream [11] and CoopNet [39]
improve resilience by building several disjoint trees. In addition, CoopNet adopts a
centralized organization protocol and relies on Multiple Description Coding (MDC)
to achieve data redundancy. FatNemo is a decentralized peer-to-peer multicast proto-
col which offers redundancy in the delivery path with only a single control topology
through the use of leaders and co-leaders. We are exploring the use of data redundancy
using forward error correction (FEC) encoding [8].

File distribution applications have gained more attention during the last few years.
BitTorrent [18] was successfully introduced as the primary distribution channel for
many Linux distributions. The protocol organizes its peers into a mesh for downloads.
Trackershelp the peers finding each other by returning a random list of peers. The Bit-

3 Peers distribute the local cache state with every data packet they send.



Torrent file distribution system uses tit-for-tat as a method to achieve a high resource
utilization, which penalties nodes behind asymmetric links with low upstream capabil-
ities. In contrast, FatNemo tries to optimize the system’s performance without adding
more penalty to low capability peers than already imposed by their access link.

FastReplica [14] addresses the problem of reliable and efficient file distribution in
content distribution networks (CDN). A publisher splits a file into equal-sized portions,
sends each of them to a different group member, and instructs the peers to download
the missing pieces in parallel from other group members. Thus the algorithm exploits
n × n potential Internet paths. In contrast, FatNemo exploits alternate paths and does
adaptive load balancing as alternate path will be used to recover missing packets.

Bullet [30] is a high bandwidth data dissemination protocol for bulk data distribu-
tion. It organizes its peers into a tree and builds an overlay mesh on top of the tree
structure. It uses random subsets to locate disjoint content within the system. Every
node receives aparent streamfrom its parent in the tree and some number ofperpen-
dicular streamsform chosen peers in the overlay. Similar to Bullet, FatNemo uses crew
members as alternate streaming peers, but relies only on a logical tree topology to define
the logical distribution tree. FatNemo reduces the effect of peers with access bandwidth
bottlenecks in the tree by construction a fat tree. Bullet’s random subset discovery al-
gorithm could benefit from FatNemo’s low average response time.

In the context of structured peer-to-peer overlay networks, [37] proposes to dynam-
ically adjust protocol parameters, such as heartbeat intervals and grace periods, based
on the operating conditions. Similar to FatNemo, it tries to reduce the maintenance cost
without failures while still providing high resilience. FatNemo’s approach differs in the
way that it uses a static low cost algorithm, which handles an increased level of tran-
siency with comparatively low cost. FatNemo’s refinement algorithm could potentially
benefit from their technique by adjusting the refinement interval based on the experi-
enced membership change rate and the measured dynamics of the underlying physical
network, thus reducing the total control overhead.

3 FatNemo’s Approach

FatNemo follows theimplicit approachto building an overlay for multicasting: par-
ticipating peers are organized in a control topology and the data delivery network is
implicitly defined based on a set of forwarding rules which we will describe in the
following paragraphs.

FatNemo organizes the set of communication peers into clusters, where every peer
is a member of a cluster at the lowest layer. Each of these clusters selects aleader
that becomes a member of the immediate superior layer. The process is thus repeated,
with all peers in a layer being grouped into clusters from where leaders are selected
to participate in the next higher layer. Hence peers can lead more than one cluster in
successive layers of this logical hierarchy.

The formation of clusters at each level of the hierarchy is currently based on avail-
able bandwidth [48, 16], although other factors such as latency [16, 3, 7] and expected
peer lifetime [9] can be easily incorporated. Clusters vary in size betweenk and2k +2,
wherek is a constant known asdegree.
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Fig. 2. FatNemo’s logical organization. The shape illustrates only the role of a peer within a
cluster: a leader of a cluster at a given layer can act as co-leader or ordinary member at the next
higher layer.

Initially the peers join the tree based on proximity. The fat-tree optimization algo-
rithm dynamically transforms the tree into a bandwidth optimized fat-tree at run time
as we will describe in the following paragraphs.

To improve the resilience of the multicast group and for load sharing, FatNemo
builds on Nemo’s concept of co-leaders. Every cluster leader recruits a number of co-
leaders with whom it forms thecrew. Crew lists are periodically distributed to the clus-
ter’s members. Co-leaders improve the resilience of the multicast group by avoiding
dependencies on single nodes and providing alternative paths for data forwarding. In
addition, crew members share the load from message forwarding, thus improving scal-
ability. Figure 2 illustrates the logical organization of FatNemo.

3.1 Fat-Tree Optimization Algorithm

To build the fat-tree, FatNemo relies on three techniques: (1) higher degree nodes should
be placed higher up in the tree, (2) the size of clusters should increase exponentially as
one ascends the tree, and (3) all peers must serve as crew members in order to maximize
load balancing.

In the following paragraphs we explain the dynamics of our protocol, such as the
joining and departure of peers, and the set of rules employed for forwarding and re-
transmission. We additionally describe how co-leaders help increase the resilience of
multicast and discuss FatNemo’s probabilistic approach to overlay maintenance. This
algorithms are inherited from Nemo and, thus, we only provide a summarized descrip-
tion here.̃footnoteFor the complete details please see [7].

3.2 More Protocol Details

We assume the existence of a well-known special host, therendezvous point (RP)[17].
A new peer joins the multicast group by querying the RP for the IDs of the members
on the top layer. Starting there and in an iterative manner, the incoming peer continues:
(i) requesting the list of members at the current layer from the cluster’s leader, (ii)
selecting from among them who to contact next based on the result from a given cost



function, and (iii) moving into the next layer. When the new peer finds the leader with
minimal cost at the bottom layer, it joins the associated cluster.

Member peers can leave FatNemo in a graceful (e.g. user disconnects) or ungraceful
manner (unannounced, e.g. when the host node crashes). For graceful departures, since
a common member has no responsibilities towards other peers, it can simply leave the
group after informing its cluster’s leader. On the other hand, a leader must first elect
replacement leaders for all clusters it owns before it leaves the session.

To detect unannounced leaves, FatNemo relies on heartbeats exchanged among the
cluster’s peers. Unreported members are given a fixed time interval, orgrace period,
before being considered dead. Once a member is determined dead, a repair algorithm is
initiated. If the failed peer happens to be a leader, the tree itself must be fixed: the mem-
bers of the victim’s cluster must elect the replacement leader from among themselves.

To deal with dynamic changes in the underlying network, every peer periodically
checks the leaders of the next higher layers and switches clusters if another leader has
a bigger available bandwidth than the current one (thresholds are used to prevent os-
cillation). Additionally, every leader checks its highest owned cluster for better suited
leaders and transfers leadership if such a peer exits. This continuing process is called
refinement.

Due to membership changes, clusters may grow/shrink beyond the cardinality
bounds defined by the clusters’ degree; such clusters must be dealt with to guarantee
the hierarchical properties of the protocol. Undersized clusters are merged with others
while oversized ones are split into two new ones. Both split and merge operations are
carried on by the cluster’s leader.

FatNemo’s data delivery topology is implicitly defined by the set of packet-
forwarding rules adopted. A peer sends a message to one of the leaders for its layer.
Leaders (the leader and its co-leaders) forward any received message to all other peers
in their clusters and up to the next higher layer. A node in charge of forwarding a packet
to a given cluster must select the destination peer among all crew members in the clus-
ter’s leader group. The algorithm is summarized in Fig. 3.

Figure 4 shows an example of the forwarding algorithm in action and illustrates
FatNemo’s resilience under different failure scenarios. The forwarding responsibility
is evenly shared among the leaders by alternating the message recipient among them.
In case of a failed crew member, the remaining leaders can still forward their share
of messages in the tree. As other protocols aiming at high resilience [41, 4], FatNemo
relies on sequence numbers and triggered NACKs to detect lost packets.

Every peer piggybacks a bit-mask with each data packet indicating the previously
received packets. In addition, each peer maintains a cache of received packets and a list
of missing ones. Once a gap (relative to a peer’s upstream neighbors) is detected in the
packet flow, the absent packets are considered missing after some fixed period of time.

Proactive recovery, where a system tries to react immediately to membership
changes, adds additional stress to an already-stressed network [44]. FatNemo relies
on a set of periodic algorithms for overlay maintenance in order to avoid congestion
collapse, but adopts a probabilistic approach to reduce the load on a possible stressed
system. Some of the most costly maintenance operations, such as splitting, merging
and refinement, are only executed with some probability or, alternatively, deferred to



FORWARD-DATA(msg)
1 R ← ∅
2 if leader /∈ msg.sender crew
3 then R ← R ∪ leader
4 for each child in children
5 do if child /∈ msg.sender crew
6 then R ← R ∪ child
7 SEND(msg, R, sender crew ← crewOf(self))
8 if isCrewMember(self) andleader /∈ msg.sender crew
9 then R ← ∅

10 R ← R ∪ super leader
11 for eachneighbor in neighbors
12 do R ← R ∪ neighbor
13 SEND(msg, R, sender crew ← crewOf(leader))

Fig. 3. Data Forwarding Algorithm:SEND transmits a packet to a list of nodes, selecting the real
destination among the crew members associated with the given destination.

the next interval. We refer to them asperiodic probabilistic operations. In the presence
of high transiency, many of these operations can not only be deferred, but completely
avoided as follow-up changes may revert a previously triggering situation.

4 Evaluation

We analyze the performance of FatNemo through simulation and compare it to that
of three other protocols – Narada [17], Nice [3] and Nice-PRM [4]. We evaluate the
effectiveness of the alternative protocols in both terms of performance improvements to
the application and protocol’s overhead, as captured by the following metrics:

Response Time:End-to-end delay (including retransmission time) from the source to
the receivers, as seen by the application. This includes path latencies along the
overlay hops, as well as queueing delay and processing overhead at peers along the
path. A lower mean response time indicates a higher system responsiveness, while
a smaller standard deviation implies better synchronization among the receivers.

Delivered Packets:The number of packet successful delivered to all subscribers within
a fixed time window. This metrics intents to illustrates the protocols ability in pre-
venting bottlenecks in the delivery tree.

Delivery Ratio: Ratio of subscribers which have received a packet within a fixed time
window. Disabled receivers are not accounted for.

Duplicate Packets:Number of duplicate packets per sequence number, for all enabled
receivers, reflecting an unnecessary burden on the network. Late packets are ac-
counted as duplicates, since the receiver already assumed them as not received.

Control-Related Traffic:Total control traffic in the system, in mega bits per second
(Mbps), during the observation interval is one part of the system’s overhead.

The remainder of this section discusses implementation details of the compared
protocols and describes our evaluation setup. Section 5 presents our evaluation results.



Fig. 4. Data forwarding in FatNemo: All nodes are able to receive the forwarded data under
different failure scenarios. Note how a sender alternates the packet destination among the crew
members.

4.1 Details on Protocol Implementations

For each of the three alternative protocols, the values for the available parameters were
obtained from the corresponding literature.

For Narada [17], the number of directly connected peers (fanout) is set to six and
may approach 12 for a short period of time. We employ the bandwidth-only scheme [16]
for constructing the overlay, as this will result in the maximal throughput. The distance
vectors, the set of the maximal bandwidth to all other peers, are exchanged in 10-sec.
intervals. The timeout for detecting dead members is set to 60 sec., and the one for mesh
partition repairs to 50 sec.

For Nice [3], heartbeats are sent at 10-sec. intervals. The cluster degree,k, is set
to 3. The grace period for dead neighbor detection is set to 15 sec.

Nice-PRM is implemented as described in [4, 5]. We used PRM-(3,0.02) with three
random peers chosen by each node, and with two percent forwarding probability. Dis-
cover messages to locate random overlay nodes are sent with 5-sec. intervals and a
time-to-live (TTL) of 5 hops.

For FatNemo, the cluster degree at the lowest layer is set to three. It grows expo-
nentially with every layer, at the second lowest layer it is nine, at the third lowest layer
it is 27, and so on. The crew size is set to the size of the cluster, thus making all peers
member of the crew. The grace period is set to 15 sec. and the mean time between crew
list exchanges is set to 30 sec.

Our implementations of the alternative protocols closely follow the descriptions
from the literature, and have been validated by contrasting our results with the published
values. However, there are a number of improvements to the common algorithms, such
as the use of periodic probabilistic operations, that while part of FatNemo were made
available to all protocols in our evaluations. The benefits from these algorithms help
explain the performance improvements of the different protocols with respect to their



original publications [17, 3, 4]. We have opted for this approach to isolate the contribu-
tion of PRM and co-leaders to the overall resilience of the multicast protocols.

For Nice, Nice-PRM and FatNemo, we check the clusters every second, but limit
the minimal time between maintenance operations. Assuming that the triggering con-
ditions are satisfied (an undersized cluster, for example) and that there has not been a
maintenance operation within the last 5 sec., a merge operation is executed with 1%
probability, a split operation with 100% probability, and a refinement operation with
1% probability. When the cluster’s cardinality falls bellow its lower bound, we reduce
the probability of execution of the refinement operation to 0.1% in an additional attempt
to avoid an expensive merge.

4.2 Experimental Setup

We performed our evaluations through detailed simulation using SPANS, a locally writ-
ten, packet-level, event-based simulator. We ran our simulations using GridG [35, 36]
topologies with 5510, 6312 and 8115 nodes, and a multicast group of 256 members.
GridG leverages Tiers [21, 10] to generate a three-tier hierarchical network structure,
before it applies a power law enforcing algorithm while retaining the hierarchical struc-
ture.

Members are randomly attached to end systems, and a random delay of between
0.1 and 80 ms is assigned to every link. The links use drop-tail queues with a buffer
capacity of 0.5 sec. We configure GridG to have different bandwidth distributions for
different link types [30]. We assume that the core of the Internet has higher bandwidth
capacities than the edge, as shown in Fig. 5. In all three scenarios, the bandwidth has a
uniform distribution with ranges shown in Fig. 5.

Fig. 5. Three simulation scenarios. The bandwidth is expressed in Kbps.
ScenarioRoutersEnd systemsLinks Client-Stub Stub-Stub Transit-StubTransit-Transit

1 510 5000 11240 400-6000 3000-8000 4000-10000 10000-20000
2 312 6000 12730 800-8000 4000-10000 6000-15000 15000-30000
3 615 7500 164501000-1500010000-3000010000-5000050000-100000

Each simulation experiment lasts for 500 sec. (simulation time). All peers join the
multicast group by contacting the rendezvous point at uniformly distributed, random
times within the first 100 sec. of the simulation. A warm-up time of 200 sec. is omitted
from the figures. The publisher join the network and start publishing at the beginning
of the simulation. Starting at 200 sec. and lasting for about 300 sec., each simulation
has a phase with membership changes. We exercise each protocol with and without
host failures during this phase. Failure rates are obtained from a published report of
field failures for networked systems [49]. Nodes fail independently at a time sampled
from an exponential distribution (with mean,Mean Time To Failure, equal to 60 min.)
to rejoin shortly after (time sampled from an exponential distribution with mean,Mean
Time To Repair, equal to 10 min.). The two means are chosen asymmetrically to allow,
on average, 5/7 of all members to be up during this phase. The failure event sequence
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Fig. 6. Delivered packets (256 end hosts, Scenario 1).

is generated a priori based on the above distribution and used for all protocols and all
runs.

In all experiments, we model multi-source multicast streams to a group. Each source
sends constant bit rate (CBR) traffic of 1000 B payload at a rate of 10 packets per
second. The buffer size is set to 16 packets, which corresponds to the usage of a 1.6-
second buffer, a realistic scenario for applications such as video conferencing.

5 Experimental Results

This section presents and discusses results from our evaluation. Here we report results
of five runs per protocol obtained with the different GridG topologies and the scenario
1. Similar results were obtained with scenario 2 and scenario 3.

Figure 6 shows the average number of delivered packets of all runs with no host
failures. As we increase the number of publishers, the protocol’s data delivery topology
collapse. This happens first for Narada, which cannot even stream the one publisher case
at the full rate. Nice and Nice PRM deliver substantially fewer packets compared to Fat-
Nemo with an increased number of publishers. FatNemo is best at avoiding bottlenecks
in the delivery tree, thus it delivers the most packets when the network is overloaded,
as seen with 8 publishers.

The performance of a multi-source multicast system can be measured in terms of
mean and standard deviation of the response time. Table 1 shows these two metrics for
the evaluated protocols with one publisher. FatNemo outperforms Nice, Nice PRM and
Narada in terms of mean and standard deviation of response time. With an increased
number of publishers the relative number of delivered packets for Nice, Nice PRM and



Table 1.Response Time (1 Publisher, 256 end hosts, Scenario 1).

Protocol Mean Std
FatNemo 0.1580.073
Nice 0.1830.082
Nice-PRM(3,0.02)0.1950.086
Narada 0.7700.464
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Fig. 7. Response Time CDF (1 Publisher, 256 end hosts, Scenario 1).

Narada decreases compared to FatNemo, which makes it impossible to fairly compare
the response time for more than one publisher with only one number. This is due the
fact, that protocols with less delivery ratio drop the packet with a high response time
more likely than others, thus giving them an unfair advantage in terms of the mean and
standard deviation of the response time in a overloaded network.

The mean response time illustrates the average performance. The distribution of the
response time serves as a per packet based performance metric. Figure 7 shows the CDF
of the response time per packet for one publisher. The y-axis is normalized to the infinite
bandwidth case, that is when all receivers receive all possible packets. FatNemo, Nice
and Nice PRM perform well, but FatNemo has a substantial advantage as it delivers
the packets earlier. Narada only delivers a fraction of all possible packets and even
these packets are substantially delayed. As we increase the number of publishers, the
protocols face more and more bottlenecks. Despite these harder conditions, FatNemo
outperforms the evaluated protocols in terms of packet delivery times as illustrated in
Fig. 8 and Fig. 9. We see that even though the mean response time for Narada is lower
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Fig. 8. Response Time CDF (4 Publisher, 256 end hosts, Scenario 1).

Table 2.Delivery Ratio (1 Publisher, 256 end hosts, Scenario 1).

Protocol No FailuresWith Failures
FatNemo 0.987 0.966
Nice 0.973 0.956
Nice-PRM(3,0.02) 0.989 0.970
Narada 0.685 0.648

than for FatNemo, FatNemo’s response time per packet still outperforms Narada clearly,
as seen with eight publishers.

Table 2 shows the delivery ratio using one publisher with and without end host
failures. We see that FatNemo performs as well as Nice PRM under the low failure
scenario with only a a drop of 2.1% in delivery ratio. Nice has a slightly lower delivery
ratio for this scenario, while Narada suffers already from a collapsed delivery tree with
only about 70% delivery ratio. In general, the delivery ratio will decrease with a increase
in the number of publishers, as the protocol’s data delivery topology slowly collapses.

The overhead of a protocol can be measured in terms of duplicate packets. We show
this metric in the second column of Table 3. Despite the high delivery ratio, FatNemo
has in average only 0.367 duplicate packets per sequence number, while Nice PRM
suffers from 5.168 duplicate packets per sequence number generated by its probabilistic
forwarding algorithm. Nice and Narada generate approximately no duplicates, but also
deliver less packets as shown in Table 2. FatNemo’s control related traffic is higher than
for Nice and Nice-PRM. FatNemo increases the cluster cardinality as one moves up
the three, thus creating a small additional overhead. The control traffic is accounted at
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Fig. 9. Response Time CDF (8 Publisher, 256 end hosts, Scenario 1).

Table 3.Overhead (1 Publisher, 256 end hosts, Scenario 1).

Protocol Duplicate packetsControl Traffic [Mbps]
FatNemo 0.367 17.99
Nice 0.000 9.211
Nice-PRM(3,0.02) 5.168 11.48
Narada 0.006 157.3

router level, thus the choice of neighbors in FatNemo adds additional overhead, since it
chooses not the closest, but the peer with the highest bandwidth as its neighbor.

6 Conclusions and Further Work

In this paper we introduced the parallel architecture concept of fat trees to overlay mul-
ticast protocols. We have described FatNemo, a novel scalable peer-to-peer multicast
protocol that incorporates this idea to build data delivery topologies with minimized
mean and standard deviation of the response time. The resulting protocol is capable
of attaining high delivery ratio under heavy load and host failures, while incurring ne-
glectable cost in terms of control-related traffic. We have demonstrated the effectiveness
of our approach through simulation under different stress scenarios. We are currently
validating our findings through wide-area experimentation.

We showed that FatNemo can achieve much higher delivery ratios when compared
to alternate protocols (an increase of up to 360% under high load), while reducing the



mean (up to 80%) and standard deviation (up to 84%) of the response time in the non-
overloaded case.
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