
Joseph Paris
CS443

Disco: Running Commodity Operating Systems on Scalable Multiprocessors

Bugnion et al.

 The purpose of Disco is to examine the problem of extending modern operating
systems to run efficiently on large-scale shared memory multi-processors without a large
implementation effort. The idea is to run a number of commodity operating systems on
virtual machines governed by a virtual machine monitor. The reasoning behind doing
this is that system software for these machines has often trailed ha rdware in achieving the
functionality and reliability required by its users. So, instead of modifying existing
operating systems to run on scalable shared-memory multiprocessors, an additional layer
(vm monitor) is inserted between the hardware and the operating system. The monitor
virtualizes all the resources of the machine, exporting a more conventional hardware
interface to the operating system. The monitor manages all the resources so that multiple
virtual machines can coexist on the same multiprocessor. For example, the monitor can
move memory between vm’s to keep applications from paging to disk when free memory
is available in the machine. In addition, the monitor dynamically schedules virtual
processors on top of the physical ones to balance the load across the machine. Basically,
the monitor creates a virtualization of every resource on the machine.
 As such, a lot of overhead is introduced into the system. For example, operations
such as the execution of privileged functions cannot be safe ly exported directly to the
operating system and must be emulated in software by the monitor. In addition, access to
I/O devices and physical memory is virtualized, so requests must be intercepted and
remapped by the monitor. While these might not be huge hits to performance, they do
require some overhead which will slow down the application. However, the direct
mapping to physical processors is a significant gain, however the virtual monitor still
needs to intercept and emulate operations that cannot be safely exported to the virtual
machine.
 I didn’t care too much for their performance analysis of the Disco system. They
seemed to want to offload much of the slowdowns seen in Disco onto faulty underlying
OS issues or the architecture. Also, many of the graphs seemed incoherent and required
in-depth reading to understand the point they are trying to make. While that is not a huge
issue it tended to lend itself towards issues/slowdowns seen in the Disco system due to
emulation, etc. I think the point here is that you can’t map OS’s designed in a certain
fashion to a virtual machine monitor and expect everything to speed up. Since those
issues exist at the OS level the problems still exist no matter what scenario you shove
them in. At most this is a test-case scenario that might provide some useful information
on inherent scalability issues seen at a particular level of the OS/system.
 A possibly better idea would be to extend the micro/exo-kernel methodologies to
a scalable infrastructure. This way you have a more tightly coupled interface and user-
level libraries that let you take advantage of the underlying architecture in any way that
the application sees fit. In that you can have huge gains in performance while allowing
the overall complexity to remain at a minimal.

