EECS 213: Homework 3

Memory and Cache

Spring 2007

Important Dates

Out: May 10, 2007.

Due: May 18, 2007 (11:59PM)

Submitting your homework: Please use the course submission site. There is a link to it from the class site. **Submit only ASCII text files.**

To be done individually.

- 1. Consider a processor which uses 16 bit addresses and can address $2^{16} = 64Kbytes$ of memory. Suppose that it has one level of cache. As in Figure 6.25 of your textbook, the address is split into a t bit tag, an s bit set index, and a b bit block offset. The cache consists of 1024 bytes, with a block size of 32 bytes. Answer each of the following for direct-mapped, 4-way set associative, and fully associative versions of the cache.
 - (a) How many cache lines are there?
 - (b) What is b?
 - (c) What is s?
 - (d) What is t?
- 2. For the cache in problem 1, draw the cache given it is structured as follows. You can elide replicated components, but annotate your drawing with how many components there are.
 - (a) Direct-mapped
 - (b) 4-way set associative
 - (c) Fully associative
- 3. Our company wants to optimize the performance of the following code

```
void vector_add(int n, int *a, int *b, int *c)
{
    int i;
```

```
for (i=0;i<n;i++) {
    c[i]=a[i]+b[i];
  }
}</pre>
```

to run on the same processor and cache as described in problem 1. The cache is write-back, write-allocate, and has an LRU replacement policy. Integers are 32 bits.

- (a) Suppose the cache is direct mapped. Let n = 2048, a = 0x4000, b = 0x8000, c = 0xc000. On average, how many times per loop iteration will you load a cache block from main memory? How many times per loop iteration will you flush a cache block back to main memory?
- (b) What is the minimum degree of associativity (i.e., the n in n-way) that the cache needs to reduce the answers in (a) to 0.375 cache blocks read per iteration and 0.125 cache blocks written per iteration?
- (c) While were all fired up to buy ultra-cool mega-associative cache hardware (which comes only in black), a smart alec programmer claims that we can get the same effect by having a = 0x4000, b = 0x8020, and c = 0xc040. Is he right? Why or why not?