
EECS 213 Spring ’07 - Midterm Name (NUID):

EECS 213: Midterm Exam

From a tour of computer systems to machine level representation of programs.

Spring 2007

Name:

Major/Department/School:

Some words of advice:

• Read all the questions first.

• Start from the easiest one and leave the harder ones for the end.

• Approximate results are almost always a valid answer; for sure I do not need 5-decimal precision answers!

• This is an Open Book exam; you may use any book or notes you like.

• Write clearly; if I can’t read it I can’t grade it.

Good luck!

Question Points Credited
1 10
2 8
3 10
4 10
5 12

Total 50

Problems ...

1

EECS 213 Spring ’07 - Midterm Name (NUID):

1. (10 points) Consider a 5-bit two’s complement representation. Fill in the empty boxes in the following table.
Addition and subtraction should be performed based on the rules for 5-bit, two’s complement arithmetic.

Answers in bold.

Number Decimal Representation Binary Representation

Zero 0 0 0000

n/a −2 1 1110

n/a 9 0 1001

n/a −14 1 0010

n/a 12 0 1100

n/a -12 1 0100

TMax 15 0 1111

TMin -16 1 0000

TMin+TMin 0 0 0000

TMin+1 -15 1 0001

TMax+1 -16 (Tmin) 1 0000

−TMax -15 1 0001

−TMin -16(Tmin) 1 0000

2

EECS 213 Spring ’07 - Midterm Name (NUID):

2. (8 points) Consider the following 5-bit floating point representation based on the IEEE floating point format.
There is a sign bit in the most significant bit. The next three bits are the exponent, with an exponent bias
is 3. The last bit is the fraction. The rules are like those in the IEEE standard (normalized, denormalized,
representation of 0, infinity, and NAN).

As discussed in class, we consider the floating point format to encode numbers in a form:

V = (−1)s ×M × 2E

where M is the significand and E is the exponent.

Fill in missing entries in the table below with the following instructions for each column:

Description: Some unique property of this number, such as, “The largest denormalized value.”

Binary: The 5 bit representation.

M : The value of the Mantissa written in decimal format.

E: The integer value of the exponent.

Value: The numeric value represented, written in decimal format.

You need not fill in entries marked “—”. For the arithmetic expressions, recall that the rule with IEEE
format is to round to the number nearest the exact result. Use “round-to-even” rounding.

Answers in bold.

Description Binary M E Value

Minus Zero 10000 0 -2.0 −0.0

Positive Infinity 01110 — — +∞
Largest Number 01101 1.5 3 12.0

Smallest number > 0 00001 0.5 -2 0.125

One 00110 1.0 0 1.0

4.0− 0.75 01001 1.5 1 3.0

2.0 + 3.0 11010 1.0 2 4.0

3

EECS 213 Spring ’07 - Midterm Name (NUID):

3. (10 points) A C function looper and the assembly code it compiles to on an IA-32 machine running
Linux/GAS is shown below:

looper:
pushl %ebp
movl %esp,%ebp
pushl %esi
pushl %ebx
movl 8(%ebp),%ebx
movl 12(%ebp),%esi
xorl %edx,%edx
xorl %ecx,%ecx
cmpl %ebx,%edx
jge .L25

.L27:
movl (%esi,%ecx,4),%eax
cmpl %edx,%eax
jle .L28
movl %eax,%edx

.L28:
incl %edx
incl %ecx
cmpl %ebx,%ecx
jl .L27

.L25:
movl %edx,%eax
popl %ebx
popl %esi
movl %ebp,%esp
popl %ebp
ret

Answer between ***
int looper(int n, int *a) {

int i;
int x = ______________; *** = 0; ***
for(i = _________; _________; *** 0; i < n ***

i++) {
if (___________________) *** a[i] > x or !(a[i] <= x) ***

x = _________________; *** x = a[i] ***
____________________; *** x++ ***

}
return x;

}
Based on the assembly code, fill in the blanks in the C source code.

Notes:

• You may only use the C variable names n, a, i and x, not register names.

• Use array notation in showing accesses or updates to elements of a.

4

EECS 213 Spring ’07 - Midterm Name (NUID):

4. (10 points) Consider the following incomplete definition of a C struct along with the incomplete code for a
function func given below.

Answer between ***

typedef struct node {

_______________ x; *** double ***

_______________ y; *** unsigned short ***

struct node *next;

struct node *prev;

} node_t;

node_t n;

void func() {

node_t *m;

m = ______________________; *** n.next->prev ***

m->y /= 16;

return;
}
When this C code was compiled on an IA-32 machine running Linux, the following assembly code was
generated for function func.

func:
pushl %ebp
movl n+12,%eax
movl 16(%eax),%eax
movl %esp,%ebp
movl %ebp,%esp
shrw $4,8(%eax)
popl %ebp
ret

Given these code fragments, fill in the blanks in the C code given above. Note that there is a unique answer.

The types must be chosen from the following table, assuming the sizes and alignment given.

Type Size (bytes) Alignment (bytes)

char 1 1
short 2 2

unsigned short 2 2
int 4 4

unsigned int 4 4
double 8 4

5

EECS 213 Spring ’07 - Midterm Name (NUID):

5. (12 points) The following problem concerns the following, low-quality code:

void foo(int x)
{

int a[3];
char buf[4];
a[0] = 0xF0F1F2F3;
a[1] = x;
gets(buf);
printf("a[0] = 0x%x, a[1] = 0x%x, buf = %s\n", a[0], a[1], buf);

}

In a program containing this code, procedure foo has the following disassembled form on an IA32 machine:

080485d0 <foo>:
80485d0: 55 pushl %ebp
80485d1: 89 e5 movl %esp,%ebp
80485d3: 83 ec 10 subl $0x10,%esp
80485d6: 53 pushl %ebx
80485d7: 8b 45 08 movl 0x8(%ebp),%eax
80485da: c7 45 f4 f3 f2 movl $0xf0f1f2f3,0xfffffff4(%ebp)
80485df: f1 f0
80485e1: 89 45 f8 movl %eax,0xfffffff8(%ebp)
80485e4: 8d 5d f0 leal 0xfffffff0(%ebp),%ebx
80485e7: 53 pushl %ebx
80485e8: e8 b7 fe ff ff call 80484a4 <_init+0x54> # gets
80485ed: 53 pushl %ebx
80485ee: 8b 45 f8 movl 0xfffffff8(%ebp),%eax
80485f1: 50 pushl %eax
80485f2: 8b 45 f4 movl 0xfffffff4(%ebp),%eax
80485f5: 50 pushl %eax
80485f6: 68 ec 90 04 08 pushl $0x80490ec
80485fb: e8 94 fe ff ff call 8048494 <_init+0x44> # printf
8048600: 8b 5d ec movl 0xffffffec(%ebp),%ebx
8048603: 89 ec movl %ebp,%esp
8048605: 5d popl %ebp
8048606: c3 ret
8048607: 90 nop

For the following questions, recall that:

• gets is a standard C library routine.

• IA32 machines are little-endian.

• C strings are null-terminated (i.e., terminated by a character with value 0x00).

• Characters ‘0’ through ‘9’ have ASCII codes 0x30 through 0x39.

6

EECS 213 Spring ’07 - Midterm Name (NUID):

Fill in the following table indicating where on the stack the following program values are located. Express
these as decimal offsets (positive or negative) relative to register %ebp:

Answers in bold.

Program Value Decimal Offset

a -12

a[2] -4

x +8

buf -16

buf[3] -13

Saved value of register %ebx -20

7

