
EECS 213 Spring ’07 - Midterm Name (NUID):

EECS 213: Midterm Exam

From a tour of computer systems to machine level representation of programs.

Spring 2007

Name:

Major/Department/School:

Some words of advice:

• Read all the questions first.

• Start from the easiest one and leave the harder ones for the end.

• Approximate results are almost always a valid answer; for sure I do not need 5-decimal precision answers!

• This is an Open Book exam; you may use any book or notes you like.

• Write clearly; if I can’t read it I can’t grade it.

Good luck!

Question Points Credited
1 ??
2 ??
3 ??
4 ??
5 ??

Problems ...

1

EECS 213 Spring ’07 - Midterm Name (NUID):

1. (?? points) In the following questions assume the variables a and b are signed integers and that the machine
uses two’s complement representation. Also assume that MAX INT is the maximum integer, MIN INT is the
minimum integer, and W is one less than the word length (e.g., W = 31 for 32-bit integers).

Match each of the descriptions on the left with a line of code on the right (write in the letter). You will be
given 2 points for each correct match.

1. One’s complement of a

2. a.

3. a & b.

4. a * 7.

5. a / 4 .

6. (a < 0) ? 1 : -1 .

a. ~(~a | (b ^ (MIN_INT + MAX_INT)))

b. ((a ^ b) & ~b) | (~(a ^ b) & b)

c. 1 + (a << 3) + ~a

d. (a << 4) + (a << 2) + (a << 1)

e. ((a < 0) ? (a + 3) : a) >> 2

f. a ^ (MIN_INT + MAX_INT)

g. ~((a | (~a + 1)) >> W) & 1

h. ~((a >> W) << 1)

i. a >> 2

2

EECS 213 Spring ’07 - Midterm Name (NUID):

2. (?? points) Consider a 6-bit two’s complement representation. Fill in the empty boxes in the following
table:

Number Decimal Representation Binary Representation

Zero 0

n/a -1

n/a 5

n/a -10

n/a 01 1010

n/a 10 0110

TMax

TMin

TMax+TMax

TMin+TMin

TMin+1

TMin−1

TMax+1

−TMax

−TMin

3

EECS 213 Spring ’07 - Midterm Name (NUID):

3. (?? points) Consider the source code below, where M and N are constants declared with #define.

int array1[M][N];
int array2[N][M];

int copy(int i, int j)
\verb:{:

array1[i][j] = array2[j][i];
\verb:}:

Suppose the above code generates the following assembly code:

copy:
pushl %ebp
movl %esp,%ebp
pushl %ebx
movl 8(%ebp),%ecx
movl 12(%ebp),%ebx
leal (%ecx,%ecx,8),%edx
sall $2,%edx
movl %ebx,%eax
sall $4,%eax
subl %ebx,%eax
sall $2,%eax
movl array2(%eax,%ecx,4),%eax
movl %eax,array1(%edx,%ebx,4)
popl %ebx
movl %ebp,%esp
popl %ebp
ret

What are the values of M and N?

M =

N =

4

EECS 213 Spring ’07 - Midterm Name (NUID):

4. (?? points) Condider the following assembly code for a C for loop:

loop:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%ecx
movl 12(%ebp),%edx
xorl %eax,%eax
cmpl %edx,%ecx
jle .L4

.L6:
decl %ecx
incl %edx
incl %eax
cmpl %edx,%ecx
jg .L6

.L4:
incl %eax
movl %ebp,%esp
popl %ebp
ret

Based on the assembly code above, fill in the blanks below in its corresponding C source code. (Note: you
may only use the symbolic variables x, y, and result in your expressions below — do not use register
names.)

int loop(int x, int y)
{

int result;

for (_____________; ___________; result++) {

__________;

__________;
}

__________;

return result;
}

5

EECS 213 Spring ’07 - Midterm Name (NUID):

5. (?? points) This next problem will test your understanding of stack frames. It is based on the following
recursive C function:

int silly(int n, int *p)
{

int val, val2;

if (n > 0)
val2 = silly(n << 1, &val);

else
val = val2 = 0;

*p = val + val2 + n;

return val + val2;
}

This yields the following machine code:

silly:
pushl %ebp
movl %esp,%ebp
subl $20,%esp
pushl %ebx
movl 8(%ebp),%ebx
testl %ebx,%ebx
jle .L3
addl $-8,%esp
leal -4(%ebp),%eax
pushl %eax
leal (%ebx,%ebx),%eax
pushl %eax
call silly
jmp .L4
.p2align 4,,7

.L3:
xorl %eax,%eax
movl %eax,-4(%ebp)

.L4:
movl -4(%ebp),%edx
addl %eax,%edx
movl 12(%ebp),%eax
addl %edx,%ebx
movl %ebx,(%eax)
movl -24(%ebp),%ebx
movl %edx,%eax
movl %ebp,%esp
popl %ebp
ret

(a) Is the variable val stored on the stack? If so, at what byte offset (relative to %ebp) is it stored, and
why is it necessary to store it on the stack?

6

EECS 213 Spring ’07 - Midterm Name (NUID):

(b) Is the variable val2 stored on the stack? If so, at what byte offset (relative to %ebp) is it stored, and
why is it necessary to store it on the stack?

(c) What (if anything) is stored at -24(%ebp)? If something is stored there, why is it necessary to store
it?

(d) What (if anything) is stored at -8(%ebp)? If something is stored there, why is it necessary to store
it?

7

