Exokernel: An OS Architecture for
Application-Level Resource Management

D. Engler, F. M. Kaashoek and J.
O'Toole Jr.

SOSP 1995

Presented by Fabian

What is a traditional OS?

* Resource manager — bottom-up/system-view
— Everybody gets a fair-share of a resource
— A control program to prevent errors & improper use

* Extended machine — top-down/user-view

— Hides the messy detalls, presenting a virtual machine that's
easier to program than the HW

» Using several high-level abstractions; e.g. processes, files,
address spaces, IPC

 All applications must use these abstractions

» Un-trusted applications cannot modify the abstractions’
implementations

EECS 443 Advanced Operating Systems
Northwestern University

Motivation for Exokernels

» Abstractions in traditional OS are overly general — all
what anyone may need
— Apps “pay” for what they don’t use, and
— Apps cannot take advantage of domain-specific optimizations

» Fixed high-level abstractions
— Hurt application performance — both abstractions and their
Implementations are compromises, i.e. somebody gets less
than what they need/want

— Hide information from application, making it hard for the app
to implement their own resource mgmt abstractions

— Limit the functionality of applications, as everybody must use
them, very few changes (and new ideas) are incorporated

EECS 443 Advanced Operating Systems
Northwestern University

High-level idea

* End-to-end argument

— Applications know better than the OS what their resource
management decisions should be, so

— Implement traditional abstractions entirely at the app level

» EXxokernel — a thin layer that multiplexes and control
physical resources through low-level primitives
— Allows extensions, modifications, replacement of abstractions

— Simpler implementation that's more reliable, more efficient,
easier to maintain

Exokernel /Z\Se re J@indir%gs)

r-g e E— B
Hardware | Frame buffer | TLB NetWork Memory

| Disk

EECS 443 Advanced Operating Systems
Northwestern University

High-level idea

» Library OSs implement the needed abstractions
— Simpler and more specialized; no need to please everyone
— Closer integrated w/ apps, since they are not trusted by kernel
— More efficient given fewer kernel crossings
— Portability by implementing whatever needed abstractions

(e.g. LIbOS that implement POSIX)
Applications @

Firefox

Library operating system

Exokernel /@e re}gindiqng
Hardware | Frame buffer | TLE Wﬂl\ﬂemory Disk

EECS 443 Advanced Operating Systems
Northwestern University

Exokernel Design

» Main challenge — Give libOS freedom to manage
resources while protecting them from each other

*» Todothis...

— Track ownership of resources
— Guard resource usage or binding points
— Revoke access to resources

* Three technigues
— Secure bindings of applications to machine resources

— Visible resource revocation; applications participate in
resource revocation protocol

— Abort protocol to break secure bindings of uncooperative
applications

EECS 443 Advanced Operating Systems
Northwestern University

Design principles

» Exokernel defines the I/F that liIbOS use to
claim/release/use resources

» What guides the I/F design? Basic principles

— EXxpose hardware (securely) — central tenet of exokernel arch
(Resources exported — CPU, physical mem, TLB, ...)

— Expose allocation — allow the app to request specific
resource, no implicit allocation

— EXpose names — avoid indirection overhead and expose
useful resource attributes; also export bookeeping data
structures (e.qg. freelists, cached TLB entries)

— EXpose revocation — so that well behaved libOS can do
manage resources more effectively
* Some policy is part of exokernel
— While exokernel cedes management of resources to libOSs,
— It still controls allocation and revocation of resources

EECS 443 Advanced Operating Systems
Northwestern University

Design — secure binding

» Multiplex resources securely among Library OSes

» Secure binding
— Decouples authorization from use
— Allows kernel to protect resource without understanding their
semantics
» Better performance
— Authorization to use resource only done at bind time
— Simple, fast, protection check done when resource is
accessed
« Example: TLB entry

— Virtual to physical mapping performed in the library (above
exokernel)

— Binding loaded into the kernel; used multiple times

EECS 443 Advanced Operating Systems
Northwestern University

Implementing secure bindings

» Hardware mechanisms
— Capability for physical pages of a file
— Frame buffer regions (SGI) — HW checks the ownership tag
when 1/O takes place
» Software caching
— Exokernel large software TLB overlaying the hardware TLB

» Downloading code into kernel

— E.g. Packet filter for demultiplexing network packets,
application specific handlers (ASH)

— Avoid expensive boundary crossings

— Similar to the SPIN idea
— Other use of downloaded code
» Execute code on behalf of an app that is not currently scheduled

» E.g. application handler for garbage collection could be installed
in the kernel

Design — visible revocation

» Traditional revocation is invisible, application is not
Involved (think page frames)
— Lower latency, no need to talk to the application
— Little information to guide it, since the application/libOS cannot
guide it or knows there’s a problem
» Visible revocation for most things

— Including processor revocation, allowing the application to
decide what part of its state to keep

EECS 443 Advanced Operating Systems
Northwestern University

Design — abort protocol

» For uncooperative libOSs, eventually use force

» Simply terminating the libOS and associated app
makes it hard to work with, instead

» Break all existing secure bindings and inform the libOS

— To inform repossession — repossession vector and
repossession exeption

— If resource has state, exokernel dumps this into another
memory or disk resource (potentially preconfigured by libOS)
» Guarantee a minimum set of resources that will not be
repossess (expect under emergency and with previous
warning)

EECS 443 Advanced Operating Systems
Northwestern University

Experiment: Aegis & ExOS

» Aegis: an exokernel on MIPS-based DECstation

— Glaze — another exokernel for SPARC-based shared-memory
multiprocessors

— Xok — ... for Intel x86 computers
* EXOS: the corresponding library OS
— Virtual memory, IPC are managed at application level
— Can be extended
» Performance compared with Ultrix 4.2, a monolithic

UNIX
— But EXOS do not offer the same level of functionality as Ultrix

EECS 443 Advanced Operating Systems
Northwestern University

Aegis performance

* Time (microsec) to perform a null procedure and
system calls (for Aeqis’, first entry is for syscalls that
do not use the stack) — an order of magnitude
difference

Machine 05 | Procedure call | Syscall (getpid)
DEC2100 | Ultrix 0.57 322
DEC2100 | Aegis 0.56 32747
DEC5100 | Ultnx 0.42 337
DEC3100 | Aegis 042 29735
DECS5000 | Ultrix 0.28 213
DEC5000 | Aegis 0.28 16/23

» Time (microsec) to dispatch an exception in Aegis and
Ultrix — two order of magnitude faster

Machine OS5 | unalign | overflow | coproc | prot
DEC2100 | Ultnix n'a 208.0 na [2380
DEC2100 | Aegis 28 28 28 3.0
DEC3100 | Ultnix n'a 151.0 na [1770
DEC3100 | Aegis 2.1 2.1 21 23
DEC5000 | Ultnix n'a 130.0 na [15340
DECS000 | Aegis 1.5 15 15 1.5

EECS 443 Advanced Operating Systems
Northwestern University

EXOS — library OS

+ EXOS manages fundamental OS abstractions at
application level

» Evaluation shows efficiency for

— |PC abstraction Machine OS [pipe [pipe” | shm | Irpc
DEC2100 | Ultrix | 326.0 na | 187.0 n/a
DEC2100 [ExOS 0.9 24.8 124 | 139
DEC3100 | Ulinx | 243.0 na | 139.0 n/a
DEC3100 [ExOS 22.6 18.6 23 | 104
DECS000 | Ulnx | 199.0 na | 118.0 n/a
DEC5000 | ExO5 14.2 0.7 57 6.3

— VM (a 150xc150 integer matrix multiplication)

Machine 05 | matrix

DEC2100 | TUltrix 7.1

DEC2100 | ExO5 7.0 3500 —

DEC3100 | Ultrix 52 B e ExOS with ASH
DEC3100 | ExO8% 532 . ———— ExOS without ASH
DEC5000 | Ultrix 38 '
DEC5000 | ExOS 37

— Remote communication using ASH
(application specific safe handlers)

Roundtrip Latency {microseconds)

EECS 443 Advanced Operating Systems Number of Processes

Northwestern University

Extensibility with ExXOS

» Easy to redefine OS abstractions

* Examples

— Extensible RPC — a trusted LRPC that’s 40% faster than the
untrusted one

— Extensible page-table structures — linear or inverted, your
choice (inverted for sparse address space)

— Extensible schedulers — a proportional-share scheduling
mechanism (stride scheduler)

EECS 443 Advanced Operating Systems
Northwestern University

Summary

* Argue OS abstractions can be bad for applications

» Traditional OS abstractions implemented in Library
OS, at application level

» Key idea — securely export hardware resources
without abstraction

» Measurements indicate significant performance
benefits — primitive kernel operations 10-100x faster
than Ultrix

» |ssues to think about

— Potential for many different Library OSes
— Portability?
— Security?

EECS 443 Advanced Operating Systems
Northwestern University

