
Keither Adams, Ole Ageson

VMWare

Presented by: Benjamin Prosnitz

 Virtual Machine Monitors (VMM) provide virtual
machine (VM) software with the impression of
running directly on hardware

 Popek and Goldberg requirements for a VMM:
 Fidelity (runs normally, as if there were no VMM)

 Performance (not interpreted)

 Safety (resources are protected as appropriate)

2

VM

Hardware

The VM Sees: Reality:

VM

VMM

Hardware

 “Type I”: (hypervisor runs directly on hardware)

Hardware

VMM

VM#2VM#1

Drivers can either be in the hypervisor or
in one of the VMs

Hardware

VMM

VM#2VM#1

 “Type II”: (hypervisor runs on a host OS)

Hardware

VMM

VM
Process

OS

Type II VMMs that use hardware virtualization
require modifications to the host OS
(patches, or Kernel Driver as in KVM)
to perform privileged virtualization instructions

3

Hardware

VMM

VM#2VM#1

D or

 For an architecture to be classically virtualizable, all
“sensitive” instructions must be privileged and trap so that
they are emulatable by the VMM:

 Sensitive instructions include:
 Processor mode changes

 Hardware accesses

 Instructions whose behavior is different in user/kernel mode

Normal Instruction
Normal Instruction
Normal Instruction

Sensitive Instruction

Normal Instruction
Normal Instruction
Normal Instruction

VM VMM

EmulationProcedure()

4

trap

 Historically x86 hasn’t been virtualizable1, since there
are sensitive instructions that do not trap:
 Instructions like popf, which has different kernel and

user-mode behavior

 SMSW, which stores the machine status

 SGDT, SLDT for segment descriptors

 Recently, classic virtualizability has become possible
due to two new (incompatible) architectures:
 AMD SVM (secure virtual machine)

 Intel VT (virtualization technology)

1. Robin, Irvine. Analysis of the Intel Pentium’s Ability to Support a Secure Virtual
Machine Monitor. Procedings of the 9th Usenix Security Symposium. 2000.

5

 A first attempt: direct fetch-and-decode emulation of all
instructions
 Slow
 Not technically virtualization by Popek & Goldberg

requirements

 A minor improvement: decoding instructions and saving
them in a cache in an easy-to-process format:

 Minor speed up (but still not technically virtualization)
 Need to manage the cache

… … …

Instruction Operand Operand

Instruction Operand Operand

6

 Idea: Compile the instructions in the cache and run
them directly

 Challenges:
 Protection of the cache

 Ensuring correctness of direct memory addresses

 Relative memory addressing needs to still work, despite
the fact that the cache may be structured differently

 Sensitive instructions need to be handled

 Also: Need to compile on demand

7

 Divide the instructions into blocks that end with a control-
flow instruction:

 The control flow instructions are replaced with jumps into
VMM code which determines what to do next
 If the destination code is already in the cache, the VMM uses

it. Otherwise, it compiles it.
 The VMM replaces the pointer to the handler in isPrime with

a direct pointer to the destination code block in a process
called chaining

8

isPrime: mov %ecx, %edi

mov %esi, $2

cmp %esi, %ecx

jge prime

nexti: mov %eax, %ecx

…

isPrime: mov %ecx, %edi

mov %esi, $2

cmp %esi, %ecx

jge [HANDLER1]

jme [HANDLER2]

 If a sensitive instruction already traps, it can be
handled when it traps

 If it doesn’t trap, replace the sensitive instruction with
a call to a procedure that performs the operation

9

Sensitive
Instruction

Emulating
Procedure

 Modify certain trapping instructions (like system calls)
so that they run code in the cache and don’t trap unless
they have to (to access hardware or page tables)

 VMWare developed a method to adaptively identify
pieces of code with which this is possible

10

 Define a virtual machine control block (VMCB) which:
 Includes control information (when should a VMEXIT

be performed)
 Includes VM state information (which is filled when a

VMEXIT is performed)

 To run the virtual machine, perform a VMENTRY after
the control block has been specified

 Many Caveats!
 Intel VT doesn’t handle real mode virtualizaton
 Instruction emulation is needed for some instructions
 No MMU virtualization – page table updates are slow
 …

11

12

13

14

15

 It is possible to use both hardware virtualization and
software virtualization at different times, switching
between modes when heuristics indicate that one may
get better performance than the other

16

 VMENTRY/VMEXIT performance
 Already improvements in new processors

 MMU Virtualization
 Nested page tables (extra gpa->hpa map)

 I/O Virtualization

17

18

