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 Virtual Machine Monitors (VMM) provide virtual 
machine (VM) software with the impression of 
running directly on hardware

 Popek and Goldberg requirements for a VMM:
 Fidelity (runs normally, as if there were no VMM)

 Performance (not interpreted)

 Safety (resources are protected as appropriate)
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 “Type I”: (hypervisor runs directly on hardware)
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Drivers can either be in the hypervisor or 
in one of the VMs
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 “Type II”: (hypervisor runs on a host OS)
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Type II VMMs that use hardware virtualization
require modifications to the host OS 
(patches, or Kernel Driver as in KVM)
to perform privileged virtualization instructions
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 For an architecture to be classically virtualizable, all 
“sensitive” instructions must be privileged and trap so that 
they are emulatable by the VMM:

 Sensitive instructions include: 
 Processor mode changes

 Hardware accesses

 Instructions whose behavior is different in user/kernel mode
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 Historically x86 hasn’t been virtualizable1, since there 
are sensitive instructions that do not trap:
 Instructions like popf, which has different kernel and 

user-mode behavior

 SMSW, which stores the machine status

 SGDT, SLDT for segment descriptors

 Recently, classic virtualizability has become possible 
due to two new (incompatible) architectures:
 AMD SVM (secure virtual machine)

 Intel VT (virtualization technology)

1. Robin, Irvine. Analysis of the Intel Pentium’s Ability to Support a Secure Virtual
Machine Monitor. Procedings of the 9th Usenix Security Symposium. 2000.
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 A first attempt: direct fetch-and-decode emulation of all 
instructions
 Slow
 Not technically virtualization by Popek & Goldberg 

requirements

 A minor improvement: decoding instructions and saving 
them in a cache in an easy-to-process format:

 Minor speed up (but still not technically virtualization)
 Need to manage the cache

… … …

Instruction Operand Operand

Instruction Operand Operand
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 Idea: Compile the instructions in the cache and run 
them directly

 Challenges:
 Protection of the cache

 Ensuring correctness of direct memory addresses

 Relative memory addressing needs to still work, despite 
the fact that the cache may be structured differently

 Sensitive instructions need to be handled

 Also: Need to compile on demand
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 Divide the instructions into blocks that end with a control-
flow instruction: 

 The control flow instructions are replaced with jumps into 
VMM code which determines what to do next
 If the destination code is already in the cache, the VMM uses 

it. Otherwise, it compiles it.
 The VMM replaces the pointer to the handler in isPrime with 

a direct pointer to the destination code block in a process 
called chaining
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isPrime: mov %ecx, %edi

mov %esi, $2

cmp %esi, %ecx

jge prime

nexti: mov %eax, %ecx

…

isPrime: mov %ecx, %edi

mov %esi, $2

cmp %esi, %ecx

jge [HANDLER1]

jme [HANDLER2]



 If a sensitive instruction already traps, it can be 
handled when it traps

 If it doesn’t trap, replace the sensitive instruction with 
a call to a procedure that performs the operation

9

Sensitive 
Instruction

Emulating 
Procedure



 Modify certain trapping instructions (like system calls) 
so that they run code in the cache and don’t trap unless 
they have to (to access hardware or page tables)

 VMWare developed a method to adaptively identify 
pieces of code with which this is possible
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 Define a virtual machine control block (VMCB) which:
 Includes control information (when should a VMEXIT 

be performed)
 Includes VM state information (which is filled when a 

VMEXIT is performed)

 To run the virtual machine, perform a VMENTRY after 
the control block has been specified

 Many Caveats!
 Intel VT doesn’t handle real mode virtualizaton
 Instruction emulation is needed for some instructions
 No MMU virtualization – page table updates are slow
 …
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 It is possible to use both hardware virtualization and 
software virtualization at different times, switching 
between modes when heuristics indicate that one may 
get better performance than the other
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 VMENTRY/VMEXIT performance
 Already improvements in new processors

 MMU Virtualization
 Nested page tables (extra gpa->hpa map)

 I/O Virtualization
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