
JTRE/JSAI	T

EECS 344 Winter 2008

Putting the JTMS to Work

Outline

• Interface between a JTMS and a rule engine

• Chronological Search versus Dependency
Directed Search: A Playoff

• Using a TMS in a problem solver: JSAINT • Using a TMS in a problem solver: JSAINT
design issues

Review: Problem Solver = TMS
+ Inference Engine

InferenceInference

Engine

(IE)

TMS

Problem Solver

The five basic actions of a TMS

• Create Nodes

• Accepts records of IE deductions (as justifications)

• Computes the correct label for nodes and supplies
them on request.
– Derives consequences of assumptions & premises based on – Derives consequences of assumptions & premises based on
dependency network

– When assumptions are retracted, their consequences are retracted

– Provides explanations for belief e.g., chains of well-founded
support

• Detects contradictory beliefs
– Based on contradiction nodes, explicit dependencies

• TMS accepts rules from IE to be scheduled for
execution when particular belief conditions are met.

Constraints on the IE

1. Provide mapping between IE and TMS data structures
– IE must inform TMS when a new node is needed

– Must be able to retrieve the TMS node associated with an
assertion.

2. Provide facilities for changing beliefs and expressing
dependency relations.
– Marking assertions as PREMISEs or ASSUMPTIONs, and for

enabling/retracting assumptions. enabling/retracting assumptions.

– Provide facilities for representing justifications.

3. Provide facilities for inspecting system’s beliefs (node
labels)

4. Provide facilities for contradiction handling.

5. Provide methods for tying the execution of rules to
belief states.
– Allow including constraints on beliefs in conditions for rules

– Ensure both belief constraints and syntactic matching constraints
are met before rules are run.

Inference Engine services

• Provides reference mechanism
– e.g., assertions, pattern matching

• Provides procedures
– e.g., rules– e.g., rules

• Provides control strategy

1. Mapping Assertions to TMS
nodes

Datum

datum-tms-node

referent

datum-lisp-form

TMS Node

(HUMAN ROBBIE)

datum-tms-node

tms-node-datum

datum-lisp-form

view-node

get-tms-node

2. Justifying assertions in terms
of other beliefs

• (assert! <fact>

(<informant> . <antecedents>))

installs a justification

• (assert! <fact> <Anything else>)

makes a premise
• (assert! <fact> <Anything else>)

makes a premise

• (assume! <fact> <reason>)

makes an assumption

• rassume!, rassert! as before

• retract! disables an assumption

• (contradiction <fact>)

installs a contradiction

3. Queries concerning Belief
States

• in?

• out?

• why?

• assumptions-of • assumptions-of

• fetch

• wfs

4. Handling Contradictions

• (with-contradiction-handler

<jtms> <handler>

. <body>)

• We’ll see example with N-queens problem• We’ll see example with N-queens problem

5. Tying rule execution to belief
states

• (rule <list of triggers> <body>)

• Triggers are (<condition> <pattern>)

• Types of conditions
– :IN– :IN

– :OUT

– :INTERN

• Trigger options
– :VAR

– :TEST

Examples of rules

(rule ((:in (implies ?p ?q) :var ?f1)

(:in ?p))

(rassert! ?q (CE ?f1 ?p)))

(rule ((:in (show ?p) :var ?f1)

:test (not

(logical-connective? ?p)))

(rassert! ((show ?p) Indirect-Proof

:PRIORITY Low)

(BC-IP ?f1)))

Search Example: The N-Queens
problem

Good solution Bad solution

Chronological Search solution

• Given NxN board
– Create a choice set for placing a queen in each column

– Unleash rules that detect captures

– Systematically search all combinations of choices

Dependency Directed Search
Solution

• Like chronological search solution,
but
– When inconsistent combination found, assert – When inconsistent combination found, assert
negation of queen statement. (Creating a
nogood)

– When searching, check for a nogood before
trying an assumption.

Chronological Search:
Time required

• IBM RT, Model 125, 16MB RAM, Lucid CL

80

90

100

0

10

20

30

40

50

60

70

80

4 5 6 7 8

Chronological Search:
Assumptions Explored

10000

12000

14000

16000

0

2000

4000

6000

8000

10000

4 5 6 7 8

Dependency Directed Search:
Time used

120

140

160

0

20

40

60

80

100

4 5 6 7 8

Dependency-Directed Search:
Assumptions Explored

2000

2500

3000

0

500

1000

1500

2000

4 5 6 7 8

Comparing the results
Time in seconds

100

120

140

160

Chrono
DDS

0

20

40

60

80

100

4 5 6 7 8

Comparing the results
Assumptions Explored

10000

12000

14000

16000

Chrono

DDS

0

2000

4000

6000

8000

10000

4 5 6 7 8

Implications

• Neither strategy changes the exponential
nature of the problem

• Dependency-directed search requires extra
overhead per state exploredoverhead per state explored

• The overhead of dependency-directed search
pays off on large problems when the cost of
exploring a set of assumptions is high

Using a TMS in problem solving

Case study: JSAINT

JSAINT: Its task

• Input: An indefinite integration problem

• Output: An expression representing the
answer

[]dxxe x∫ ++ 63.0)7.1sin(2.34 2[]dxxe x∫ ++ 63.0)7.1sin(2.34 2

JSAINT returns

xxe x 63.0)7.1cos(88.12 2 +−

Issues in JSAINT design

• Explicit representation of control
knowledge

• Suggestions Architecture

• Special-purpose higher-level • Special-purpose higher-level
languages

• Explanation generation

Issue 1: Explicit representation
of control knowledge

• The use of show assertions in KM* is only the
beginning!

• Recording control decisions as assertions
enablesenables
– Control knowledge to be expressed via rules

– keeping track of what is still interesting via the TMS

– Explaining control decisions

– Provides grist for debugging and learning

• Key part of JSAINT design is a control
vocabulary

Issue 2: Control via
suggestions

• Problem: Local methods cannot detect
loops, combinatorial explosions

• Solution: Decompose problem-solving
operations into two kinds:operations into two kinds:
– Local operations for “obvious” tasks, making
relevant suggestions

– Global operations for choosing what to do

• Suggestions Architecture is a very
useful way to organize problem solvers

Issue 3: Special-purpose
higher-level languages

• Problem: Rules still too low-level for many
purposes.

• Solution: Design special-purpose language to
meet domain experts half-waymeet domain experts half-way

(defIntegration Move-Constant-Outside

(Integral (* ?const ?nonconst) ?var)

:test (and (not (occurs-in? ?var

?const))

(occurs-in? ?var ?nonconst))

:subproblems ((?int

(Integrate

(Integral ?nonconst ?var))))

:result (* ?const ?int))

Issue 4: Explanation generation

• Want to know how a solution was
obtained
– Dependencies involving the data provide this

• Want to know what went wrong when • Want to know what went wrong when
JSAINT can’t solve the problem
– Dependencies involving the control assertions
provide this

How SAINT Worked

1. Is problem a standard form?
If so, substitute & return answer

2. Find potentially applicable transformations.
For each transformation, create theFor each transformation, create the

subproblem of solving the transformed
problem.

• SAINT used 26 standard forms, 18
transformations

• Also used many special-purpose procedures

Knowledge about Integration

• Standard forms

vdv v→∫ 1

2

2

• Transformations

∫ 2

cg(v)dv→ c g(v)dv∫∫

JSAINT Architecture

Controller
AND/OR

Graph

What to do

Integration

Operators

Graph

Suggestions

Problems to be solved

Central Controller

• Gathers suggestions about particular
subproblems

• Selects what subproblem to work on next

• Ensures that resource limits aren’t exceeded• Ensures that resource limits aren’t exceeded

AND/OR Trees

•

All must be solved for the operator

to provide an answer

Solved if

either works

OR node

AND node

AND/OR Graph

• Maintains status of work on problems and
subproblems

• Detects when problems are solved

• Detects when problems cannot be solved• Detects when problems cannot be solved

Integration Operators

• Provide direct solutions to simple problems
(analogously to SAINT’s standard forms)

• Suggests ways of decomposing problems
into simpler problemsinto simpler problems

JSAINT in operation

1. If original problem has been solved,
or clearly cannot be solved,
or if resource bounds have been reached,
quit.

2. Select best subproblem P to work on.

3. If P can be directly solved, do it.

4. Otherwise, gather suggestions for how to
solve P and extend the AND/OR graph
accordingly.

Representations

• Mathematics is the easy part

(x + 5)dx∫

is represented as

(integral (+ x 5) x)

• Representing control knowledge is harder

How detailed?

• Implicit
(integral (+ x 5) x)

• Make operations to perform explicit
(integrate (integral (+ x 5) x))(integrate (integral (+ x 5) x))

• Make nature of goal explicit
(solve

(integrate (integral (+ x 5) x)))

• Make nature of activity explicit
(do (solve

(integrate

(integral (+ x 5) x))))

Tradeoffs

• Implicit often means fast & simple
– Fewer assertions means less storage, fewer
justifications

– Avoid hunting polar bears in the desert

• Explicit often means flexible &
maintainable
– Recording decisions in dependency network makes
them available to both the program and its users

– Avoid killing dead bears

JSAINT Decisions

• Won’t explicitly represent goal versus
problem versus task distinction

• Only kind of goal: • Only kind of goal: TRY
(TRY (integral-of-sum

(integral (+ x 5) x)))

Success or failure of problems

(solved <P>) is believed exactly when
problem P has been solved

(failed <P>)is believed exactly when P (failed <P>)is believed exactly when P
cannot be solved by JSAINT given what it
knows.

(solution-of <P> <A>)holds exactly when A
is the result of solving problem P

Representing Goals

• JSAINT uses the form of the goal itself
(integrate (integral (+ x 5) x))

• Advantage: Easy to recognize recurring
subproblemssubproblems
– Actually an AND/OR graph rather than an AND/OR tree

• Alternative: Reify goals
(goal GOAL86)

(GOAL86 form-of

(try (risch-algorithm

(integrate

(integral CENSOREDCENSORED)))))

Representing progress

(expanded P)is believed exactly when work
has begun on P

(open P) is believed exactly when P has been
expanded but is not yet solved or known to
be unsolvable.
expanded but is not yet solved or known to
be unsolvable.

(relevant P) is believed exactly when P is
still potentially relevant to solving the original
problem.

The natural history of a
problem

(expanded P)

(open P)

(relevant P) (expanded P)

New problem

P P expanded

P failed

Parent no longer
(open P)

(relevant P)

(failed P)

(expanded P)

(open P)

(relevant P)
(expanded P)

(open P)

(relevant P)

(solved P)

(solution-of P solution)

P solved

Parent no longer

open

:IN

:OUT

Semantics of success and
failure for AND nodes

• Failure of single child means failure of parent

• Success of all children means success of
parent

Semantics of success and
failure for OR nodes

• Failure of all children means failure of parent

• Success of any child means success of
parent

Closed-World assumptions in
JSAINT

• Implicit in structure of system

1. All possible relevant suggestions are
available when a problem is first posed.

2. Every operator succeeds if its conjunctive 2. Every operator succeeds if its conjunctive
subgoals succeeds

• However: Any node can gain parents at any
time.

Design issues for operators

• An operator must
– look for relevant problems

– make suggestions when it finds them

– apply itself when selected by the controller– apply itself when selected by the controller

– justify an answer when it succeeds

• This requires using the control
vocabulary in a reasonable protocol

A typical operator

(defIntegration Integral-of-Sum

(integral (+ ?t1 ?t2) ?var)

:SUBPROBLEMS

((?int1 (integrate((?int1 (integrate

(integral ?t1 ?var)))

(?int2 (integrate

(integral ?t2 ?var))))

:RESULT (+ ?int1 ?int2))

Looking for relevant problems

• Look for expanded assertions that match

(expanded (integrate (+ x y) x))(expanded (integrate (+ x y) x))

Making suggestions

• Happens antecedently

(suggest-for(suggest-for

(integrate (integral (+ x y) x))

(integral-of-sum

(integral (+ x y) x)))

Controller communicates its
wishes

• Operator spawns rule that looks for the signal
to start working:

(expanded(expanded

(try (integral-of-sum

(integral (+ x y) x))))

How the Controller Works

1. Check the original problem
If solved, then halt & report success
If failed, then halt & report failure

2. If agenda is empty, halt & report failure2. If agenda is empty, halt & report failure

3. If resource allocation exceeded, halt & report
failure

4. Select simplest subproblem on the agenda
and work on it

5. Return to Step 1

The Agenda

• Unlike TRE queues, not everything will
be executed.

• Items on the agenda consist of
– A subproblem– A subproblem

– An estimate of its difficulty

• Difficulty estimates depend only on the
structure of the problem, not its history

Working on a subproblem

1. Assert EXPANDED and assume OPEN

2. Run JTRE queues to completion

3. If SOLUTION-OF found, then finish.

4. Fetch all suggestions for the problem4. Fetch all suggestions for the problem

5. If no suggestions, mark FAILED.

6. Otherwise, install TRY assertions as OR
children of the problem

