Natural Deduction

EECS 344 Winter 2008

Overview

- Natural deduction as a domain for thinking about problem solver ideas
- The KM* system
- Examples with KM*

Natural deduction as microworld

- Was in fact studied intensively at various times in AI research
 - Originally developed by logicians as a model for how people reason
- Rarely used in practical systems today
 You'll see some better techniques soon
- But still useful for understanding tradeoffs in designing reasoning systems

Kalish & Montegue

- Developed a set of heuristics for doing logical proofs
- Introduction rules
 - not introduction, and introduction, or introduction, conditional introduction, biconditional introduction
- Elimination rules
 - not elimination, and elimination, or elimination,
 conditional elimination and biconditional elimination
- KM* is based on their formalism

Kalish & Montegue cont.

- Organized along five different connectives:
 not, and, or, implies (⇒), and iff (⇔).
- Rules can either *eliminate* relations or *introduce* new relations
 - Elimination rules are much like the simplification rules in Bundy system
 - Introduction rules are require more control knowledge--cannot be used randomly

Structure of a proof

- A proof is a set of numbered lines
- Each line has the form
 enumber> <statement> <justification>
- Example:

27 (implies P Q) Asn 28 P given 29 Q (CE 27 28)

Proof Rules for KM*

- Use *boxes* to denote logical contexts
- Example: Indirect proof schemata

Not Elimination

i (not (not P)) P (NE i)

AND Elimination

OR Elimination

- i (or P Q)
- j (implies P R)
- k (implies Q R)
 - R (OE i j k)

Conditional Elimination

i (implies P Q) j P Q (CE i j)

Biconditional Elimination

i (iff P Q)
(implies P Q) (BE i)
(implies Q P) (BE i)

And Introduction

Or Introduction

i P (or P Q) (OI i) (or Q P) (OI i)

Conditional Introduction

Biconditional Introduction

- i (implies P Q)
- j (implies Q P)
 - (iff P Q) (BI i j)

KM* Examples

- Several of them in the book
- How to read them:
 - Don't go directly to the proofs: Try proving them yourself first, then peek.
 - -Think about what you are doing in the process of doing a proof. That is the process you will be modeling soon...

Simple KM* Example

• Premises

-If it is spring, there cannot be snow

-It snowed this week

• Show

-It cannot be spring

- Formalization
 - -(implies spring (not snow))

-snow

-(show (not spring))

- 1. (implies spring (not snow)) Premise
- 2. snow

Premise

3. (show (not spring))

- 1. (implies spring (not snow)) Premise
- 2. snow

Premise

- 3. (show (not spring))
- 4. spring Asn

- 1. (implies spring (not snow)) Premise
- 2. snow Premise
- 3. (show (not spring))
- 4. spring Asn
- 5. (not snow) (CE 1 4)

1. (impl	ies spring	g (not	snow))Premise
----------	------------	--------	-------	----------

2.	SNOW	Premise
3.	(show (not spring))	(NI 4 2 5)
4.	spring	Asn
5.	(not snow)	(CE 1 4)

Implementing KM* in a reasoning system

- How to encode the rules?
 - Some kind of rule would make sense
 - -How do we control them?
- How to do boxes?