
Implementing a qualitative
reasoner: Part 2

EECS 344

Winter 2008

Why Qualitative Physics?

• Suppose someone tells you that the level in G
is rising, and you want to figure out what
could be happening.

F G H

Qualitative Process Theory

• Ontological Assumptions

• Mathematics

• Causal Account

• Organizing Domain Theories

• Basic Inferences

Example

Three possible contained stuffs, four potential
fluid flows

F G H

Example

F G H

F G H

F G H

F G H

F G H

F G H

F G HF G H

F G H

Design issues

• How should we represent changes over time?

• What should the modeling language look
like?

• How do we build scenario models?

• How should inequality reasoning be
performed?

• How should we search for interpretations?

Representing change over time

• In this task, we don’t need to!

• Several good alternatives if we did:
– Modal operators (Holds p t)

– Slices (> (P (at Wg t1)) (P (at Wg t2)))

– Implicit temporal notation
(> (P Wg) (P Wf))

The Modeling Language

• defprocess, defview to define entities and
relationships that change over time

• Implement similarly to integration operators
in JSAINT

• Need three other constructs as well

defPredicate

• Provides easy way to define the
consequences of a predicate

• (defPredicate <form> .

<consequences>)

(defPredicate (heat-connection ?src ?path ?dst)

(heat-path ?path) ;; inferred type

(heat-connection ?dst ?path ?src)) ;; symmetric

defEntity

• Provides a way of defining new entities

• Implication: Predication true if and only if the
entity exists.

• (defEntity (<predicate> <ind>) . <consequences>)

(defentity (Physob ?phob)

(quantity (heat ?phob))

(quantity (temperature ?phob))

(> (A (heat ?phob)) ZERO)

(> (A (temperature ?phob)) ZERO)

(qprop (temperature ?phob) (heat ?phob)))

defRule

• Provides “glue” for other descriptions
• (defrule <name> <triggers> . <consequences>)

• (defrule Contained-Stuff-Existence

((Container ?can)(Phase ?st)(Substance ?sub))

;; Assume that every kind of substance

;; can exist in in every phase inside

;; every container.

(quantity ((amount-of ?sub ?st) ?can))

(>= (A ((amount-of ?sub ?st) ?can)) ZERO))

Subtle issue: Existence of
quantities

• Continuous properties of things that don’t
exist need to be treated differently.
– The rat poison in your coffee.

– The radiation level of the plutonium under your chair

• How do we easily link quantities to
individuals?

Linking quantities to
individuals

• Declare them explicitly
(defquantity-type (heat individual))

• Force them to be unary
(heat <fluid>)

• Can curry to allow multiple arguments
((amount-of-in <substance> <phase>) <container>)

Building Scenario Models

Scenario

Model

Domain

Theory

Structural

Description

Task

Constraints

Model

Builder

Working Assumptions

• All of the situation is relevant
– No subsystems that can be ignored or isolated.

– Can ignore my car’s electrical system when trying to fix a
leak in the radiator.

• All of the domain theory is relevant
– No phenomena that can be ruled out a priori.

– Quantum tunneling as an explanation for why my car is
using gas unusually quickly

• The domain theory will introduce only a finite
number of individuals, given a finite structural
description
– Every physical object can be broken down into at least

two parts, each of which itself is a physical object.

Solution: Instantiate everything

• Translate domain theory into LTRE rules.

• Enter structural description as assumptions
(or assertions)

• Let LTRE sort it out.

The logic of processes

• Let’s take a look at the code...

– mlang.lsp implements the constructs of the modeling
language

– tnst.lsp implements a sample domain theory.

Efficient inequality reasoning

• How not to do it:
(rule ((:true (> ?n1 ?n2) :var ?>1))

(rule ((:true (> ?n2 ?n3) :var ?>2))

(rassert! (:implies (:and ?>1 ?>2)

(> ?n1 ?n3))

:transitivity))

(rule ((:true (= ?n2 ?n3) :var ?=1))

(rassert! (:implies (:and ?>1 ?=1)

(> ?n1 ?n3))

:transitivity)))

;; Plus two similar rules

• Introduces new, unnecessary intermediate statements

What’s really needed?

• Key observation: Only inequalities mentioned by some other
part of the scenario model are relevant.

• Treat inequalities as a graph.

• All transitivity inferences correspond to cycles in the graph

A

C

B

Implied by other

two relationships

Further Optimization:
“Soft inequalities”

• Obvious representation takes four statements

• Lots of redundancy

A  B

A  B

A  B

AB

How soft inequalities work

• Really only need two statements per
comparison:

A  B  A  B B  A

A  B  A  B B  A

A  B A  B B  A

AB A  B B  B

Let’s look at the inequality code

• ineqs.lsp defines the transitivity code

Searching for interpretations

• What’s an interpretation?
– A set of active processes and their combined effects that

predicts the observed data.

• A form of abductive inference
– “If these processes were acting, and this change went

this way instead of that, then we’d get what we are
seeing.”

– Given B, A implies B, infer A.

• Constraint: Want the most plausible
interpretation.
– The level is rising because gravity within the container

just changed its sign

How to search process
structures?

• Use dependency-directed search

• But over what?
– set of preconditions and quantity conditions?

– set of active processes and views?

• Many combinations of preconditions and
quantity conditions have equivalent process
structures

• Simpler to organize search around set of
active views and processes.

How the search is organized

• Driver routine that organizes everything else

– mi.lisp

• Generation of all process structures and view
structures

– psvs.lisp

• Resolve influences for each

– resolve.lisp

• Recording complete states

– states.lisp

Let’s look at the search code...

Resolving Influences

• Find construals for the sets of influences on
all quantities

– SETUP-IR

• Impose a causal ordering on all the quantities

– FIND-INFLUENCE-ORDERING

• Starting with direct influences, attempt to
resolve all quantities.

–RESOLVE-INFLUENCES-ON

• Use dependency-directed search to find
consistent choices when ambiguity arises

–RESOLVE-COMPLETELY

We won’t look at the influence
resolution code

• You’ll do that as part of your homework

Implementing QP Laws

• Use PDIS rules to implement simple universal
laws

• Use PDIS rules to provide “glue” linking lisp
procedures to the rest of the system.

• Let’s examine laws.lisp...

Some design observations

• Sophisticated non-monotonic reasoning is
quite feasible
– qualification problem (what can affect a situation) solved

by theory of what kinds of mechanisms can be causes.

– frame problem solved by presuming that things only
change when caused.

– Logicians running behind practice, as usual

Tradeoff: What’s in rules versus
procedures?

• Some decisions cannot be made locally
– Closed world assumptions

• Need flexible control structures that can make
global decisions
– Surely there is something better than Lisp code for this!

Migration of rules to special-
purpose code

• Examples
– Reasoning about ordinal relations

– Influence resolution

• Do “obvious” implementation first

• Optimize only when you know where the
bottlenecks are

Habitability

• Make formats for knowledge as
implementation-independent as possible

• Make readable output and reports early

• When the going gets tough, the tough get GUI

Homework 6

• Assigned 2/14/08

• Due by start of class 2/21/08

• Please use subject line HW6

• From Building Problem Solvers, Chapter 11:
– Problem 3

– Problem 13

– Extra credit: Problem 10

