Implementing a qualitative
reasoner: Part 2

EECS 344
Winter 2008

Why Qualitative Physics?

« Suppose someone tells you that the level in G
IS rising, and you want to figure out what
could be happening.

- G H

Qualitative Process Theory

Ontological Assumptions
Mathematics

Causal Account

Organizing Domain Theories
Basic Inferences

Example

Three possible contained stuffs, four potential
fluid flows

Fl |G| | H
— 1

Example

T (I
.E,_ .E,_
m m
[OIR[C]
._._.,_ ._._.,_

T
mm ||
= _._._.G__
T H_.E,v
LL|| L]

Design issues

How should we represent changes over time?

What should the modeling language look
like?

How do we build scenario models?

How should inequality reasoning be
performed?

How should we search for interpretations?

Representing change over time

* In this task, we don’t need to!

« Several good alternatives if we did:
— Modal operators (Holds p t)
— Slices (> (P (at Wg tl)) (P (at Wg t2)))

— Implicit temporal notation
(> (P Wg) (P Wf))

The Modeling Language

defprocess, defview to define entities and
relationships that change over time

Implement similarly to integration operators
In JSAINT

Need three other constructs as well

defPredicate

 Provides easy way to define the
consequences of a predicate

 (defPredicate <form>
<consequences>)

(defPredicate (heat-connection ?src ?path ?dst)
(heat-path ?path) ,, inferred type
(heat-connection ?dst ?path ?src)) ,, symmetric

defEntity

 Provides a way of defining new entities

« Implication: Predication true if and only if the
entity exists.
* (defEntity (<predicate> <ind>) . <consequences>)

(defentity (Physob ?phob)
(quantity (heat ?phob))
(quantity (temperature ?phob))
(> (A (heat ?phob)) ZERO)
(> (A (temperature ?phob)) ZERO)
(gprop (temperature ?phob) (heat ?phob)))

defRule

* Provides “glue” for other descriptions

e (defrule <name> <triggers> . <consequences>)

e (defrule Contained-Stuff-Existence
((Container 7?can) (Phase ?st) (Substance ?sub))
;; Assume that every kind of substance
;; can exist in in every phase inside
;; every container.
(quantity ((amount-of ?sub 7?st) 7?can))
(>= (A ((amount-of ?sub ?st) ?can)) ZERO))

Subtle issue: Existence of
guantities

« Continuous properties of things that don’t
exist need to be treated differently.
— The rat poison in your coffee.
— The radiation level of the plutonium under your chair

« How do we easily link quantities to
Individuals?

Linking quantities to
individuals

* Declare them explicitly
(defquantity-type (heat indiwvidual))

 Force them to be unary
(heat <fluid>)

« Can curry to allow multiple arguments

((amount-of-in <substance> <phase>) <container>)

Building Scenario Models

Structural
Description

Model
Builder

Scenario
Model

Working Assumptions

« All of the situation is relevant
— No subsystems that can be ignored or isolated.

— Can ignore my car’s electrical system when trying to fix a
leak in the radiator.

« All of the domain theory is relevant
— No phenomena that can be ruled out a priori.
— Quantum tunneling as an explanation for why my car is
using gas unusually quickly
« The domain theory will introduce only a finite
number of individuals, given a finite structural
description

— Every physical object can be broken down into at least
two parts, each of which itself is a physical object.

Solution: Instantiate everything

 Translate domain theory into LTRE rules.

* Enter structural description as assumptions
(or assertions)

e Let LTRE sort it out.

The logic of processes

 Let’s take a look at the code...

—mlang.lsp implements the constructs of the modeling
language

— tnst.lspimplements a sample domain theory.

Efficient inequality reasoning

« How not to do it:
(rule ((:true (> ?nl ?n2) :var ?>1))
(rule ((:true (> ?n2 ?n3) :var ?>2))
(rassert! (:implies (:and ?>1 ?>2)
(> ?nl ?n3))
:transitivity))
(rule ((:true (= ?n2 ?n3) :var ?=1))
(rassert! (:implies (:and ?>1 ?=1)
(> ?nl ?n3))
:transitivity)))
;, Plus two similar rules

* Introduces new, unnecessary intermediate statements

What’s really needed?

Key observation: Only inequalities mentioned by some other
part of the scenario model are relevant.

Treat inequalities as a graph.
All transitivity inferences correspond to cycles in the graph

Further Optimization:
“Soft inequalities”

 Obvious representation takes four statements

A<B
A=B
A>B
AlB

« Lots of redundancy

How soft inequalities work

« Really only need two statements per
comparison:

A<Bs AKBA-B<LA
A=B< A<BAB<A
A>B< -A<BAB<A
AlB& -A<BA—-B<B

Let’s look at the inequality code

« ineqgs.1lsp defines the transitivity code

Searching for interpretations

« What’s an interpretation?

— A set of active processes and their combined effects that
predicts the observed data.

« A form of abductive inference

— “If these processes were acting, and this change went
this way instead of that, then we’d get what we are
seeing.”

— Given B, A implies B, infer A.
« Constraint: Want the most plausible
Interpretation.

— The level is rising because gravity within the container
just changed its sign

How to search process
structures?

Use dependency-directed search

But over what?
— set of preconditions and quantity conditions?
— set of active processes and views?

Many combinations of preconditions and
guantity conditions have equivalent process
structures

Simpler to organize search around set of
active views and processes.

How the search Is organized

Driver routine that organizes everything else
-mi.lisp

Generation of all process structures and view
structures

— psvs.lisp

Resolve influences for each
— resolve.lisp
Recording complete states
— states.lisp

Let’s look at the search code...

Resolving Influences

Find construals for the sets of influences on
all quantities

— SETUP-IR
Impose a causal ordering on all the quantities
- FIND-INFLUENCE-ORDERING

Starting with direct influences, attempt to
resolve all quantities.

—RESOLVE-INFLUENCES-ON

Use dependency-directed search to find
consistent choices when ambiguity arises

—RESOLVE-COMPLETELY

We won'’t look at the influence
resolution code

* You’ll do that as part of your homework

Implementing QP Laws

 Use PDIS rules to implement simple universal
laws

* Use PDIS rules to provide “glue” linking lisp
procedures to the rest of the system.

* Let’s examine laws.lisp...

Some design observations

« Sophisticated non-monotonic reasoning Is
guite feasible

— gqualification problem (what can affect a situation) solved
by theory of what kinds of mechanisms can be causes.

— frame problem solved by presuming that things only
change when caused.

— Logicians running behind practice, as usual

Tradeoff: What’s in rules versus
procedures?

« Some decisions cannot be made locally
— Closed world assumptions

 Need flexible control structures that can make
global decisions
— Surely there is something better than Lisp code for this!

Migration of rules to special-
purpose code

 Examples
— Reasoning about ordinal relations
— Influence resolution

* Do “obvious” implementation first

* Optimize only when you know where the
bottlenecks are

Habitability

 Make formats for knowledge as
Implementation-independent as possible

 Make readable output and reports early
« When the going gets tough, the tough get GUI

Homework 6

Assigned 2/14/08
Due by start of class 2/21/08
Please use subject l[ine HW6

From Building Problem Solvers, Chapter 11.:
— Problem 3
— Problem 13
— Extra credit: Problem 10

