LOGIC-BASED
TRUTH MAINTENANCE
SYSTEMS

EECS 344
Winter, 2008

Overview

Limitations of the JTMS

LTMS basics

Logical Specification of LTMS
Boolean Constraint Propagation
Interface to inference engine
Example: Constraint solving

Logical import of JTMS clauses

Definite clauses

Xl/\.../\Xn —>C

No negation
Cannot directly say

X= Y

Must use encoding tricks to implement more
expressive logic

Encoding negation in JTMS

 For each propositional node P, add extra
node for its negation.

 Install a justification for a contradiction for P

and its negation.

1

Encoding Arbitrary Clauses

e Suppose we want to encode

AvBvC

« Could translate into a set of definite clauses

Ar—-A=1 —-BA-C=A
BA—-B=>1 —-AA-C=1B

All clauses require expansion

« Consider (implies P Q)
P=0
—Q=—-P

 Especially important in backtracking, if
Information can be derived in different orders

AN AN AA A AR = A

Solution: Use a more powerful

TMS
 Nodes have three possible labels:
— :TRUE
— :FALSE
— :UNKNOWN

« Justifications are disjunctive clauses:
o] VAL [0 IAVAS |

« Each term in a clause has a sign, e.g.,
whether or not it is negated

Other LTMS modifications

Assumptions work as before

Premises work as before (i.e., they are nodes
justified by empty clauses)

No contradiction nodes are necessary

Contradiction detection is handled by clauses
being violated

Av —B
—A
B

Logical Specification of LTMS

Given

— a set of clauses C
— a set of assumptions A

For any proposition P, label it
— !TRUE if it is derivable
— :FALSE if its negation is derivable
— :UNKNOWN otherwise

If C & A are unsatisfiable, complain

Produce explanations for every labelled node,
even when C & A unsatisfiable.

Boolean Constraint
Propagation

« Best algorithm for implementing an LTMS

e Sound
o Efficient

* Incomplete (but see Chapter 13!)

Basic Idea

A clause is either
— Satisfied: Some node’s sign matches its label
— Violated: Every node’s sign is opposite that of its label

— Unit Open: One node is unknown, remainder have signs
opposite their labels.

— Non-Unit Open: Multiple unknown nodes, clause
unsatisfied.
Observation #1: A unit open clause can be
satisfied by labeling it with its sign.

Observation #2: A violated clause indicates a
contradiction.

Observation #3: No other cases allow
Inference.

Example

—PVvV-a(gvVvlI

P false, satisfied.
P true, Q true, R false, violated.

P true, Q true, R unknown: Unit open. Can
derive R as true

P unknown, Q true, R false: Unit open. Can
derive P as false.

Graphical notation for LTMS

Clauses dynamically simulate
definite clauses

<N

Clauses are multidirectional

h—
<8

Clauses provide contradiction
detection

®\1/0 T
<>

Limitations of BCP

e Literal incompleteness

X\ Y
X\/—ly

* Refutation incompleteness

XVY — —XVY
X\/—|y —|X\/—|y

* No formal characterization of when it loses

Inference Engine Interface

Interpretation of labels
How to specify clauses
Adding data

Queries

Rules

Contradiction Handling

Using more complex labels

 No longer have (:NOT P) Inthe database

* In querying (:NOT P), return opposite of
label of P

« When asserting/assuming (:NOT P), P

becomes a premise/assumption with label
: FALSE

Automatic translation into
clauses

External system uses standard propositional
logic, with usual set of connectives (plus
taxonomy)

LTMS code translates into appropriate set of
clauses (see normalizein ltms.lisp)

Original form used as informant for
explanations

Only time a statement with connectives is
entered into the database is iIf it IS assumed.

Warning: A common bug

e The set of connectives IS
— :NOT, :AND, :OR, :IMPLIES, :IFF, :TAXONOMY

* These aren’t connectives
— NOT, AND, OR, IMPLIES, IFF, TAXONOMY
- =>, ~

Adding Data

e assert!, assume!, retract!, rassert!
as before

« contradiction takes a list of nodes and
creates a clause that is violated, given their
current labels.

« assuming is a macro that provides an
environment with temporary assumptions

Queries

« Assertion-level queries (e.g., fetch,
referent) equivalent.

 Queries about beliefs now reflect new labels
(i.e., true?, false?, known?, unknown?)

« Explanation-exploring procedures similar to
before (e.g., why?, assumptions-of,
consequences, explore)

Rules

« Trigger conditions now reflect belief states
(e.g., :TRUE, :FALSE, but not :UNKNOWN)

Otherwise identical to earlier systems

(rule ((:true (human ?x) :wvar ?h))
(rassert! (:implies ?h
(:and (mortal 7?x)
(:not
(infallible ?x))))
:limited-creatures))

Contradiction Handling

 Orthogonal issue to type of TMS

« Before: lambda-bind single contradiction
handler.

 Not good enough!

Example

Consider the following choice sets:
{A1, A2, A3}
{B1, B2, B3}
{C1, C2, C3}

Suppose each set has its own contradiction
handler (Ha, Hb, Hc)

Suppose we are exploring {A2, B2, C2}

Suppose we find a contradiction whose
underlying assumptions is {A2, B2}.

We're in trouble -- why should Hc know what
to do here?

When does rebinding work?

1. All assumption-manipulating operations are
Identified, and each provided with an
appropriate contradiction handler.

2. Assumption-manipulating operations must
proceed depth-first.

3. Relative Closure: Every consequence that
holds for the current set of assumptions that
might lead to a contradiction must be
computed before making more assumptions.

Relative Closure often
unrealistic

Information can arrive unexpectedly
 The set of consequences can be
infinite

Processing can be distributed

Often works for toy problems

 But it should be abandoned very
quickly!

Solution: Stack-based
contradiction handling

Organize assumption-manipulating
operations in depth-first fashion

Each operation pushes a contradiction
handler when it begins, and pops it when it is
finished.

When a contradiction occurs, check each
handler in turn to see if it Is relevant.

Implements chronological backtracking
within subset of relevant choices.

Assume a particular failure

Assume that you know how the
parts can fail

Assume that you know how the
parts work

Assume parts you know about
are the only relevant ones

Assume a repairable part
Is the source of the problem

Example: Simple constraint
satisfaction problem

* Kind of problem often found in “logic
books” in newsstands

 Formally, set of variables whose values
range over a finite domain
(mathematical perspective).

 Formally, a set of attribute statements
about a collection of objects (logical
perspective).

Example: Remember the Marx
Brothers?

« Groucho, Chico, Harpo, and
b

* One liked to expound,
another played the piano,
another liked animals...

« Which one was which?

Constraints

The pianist, harpist, and talker are distinct
brothers.

The brother who is fond of money is distinct
from the one who is fond of gambling, who is
also distinct from the one who is fond of
animals.

The one who likes to talk doesn't like
gambling.

The one who likes animals plays the harp.

More constraints

 Groucho hates animals.
 Harpo is always silent.
* Chico plays the piano.

Homework

 Problem 7(b), page 343
 Test problems:

SEND DONALD FIFTY BASE
+ MORE + GERALD +STATES +BALL

MONEY ROBERT AMERICA GAMES
e Hints:

— Think hard about representation first!
— Squeeze as much information out as possible when making each
assumption
« Optional: For background, see
http://www.geocities.com/Athens/Agora/2160/primer.ht
ml

http://www.geocities.com/Athens/Agora/2160/primer.html
http://www.geocities.com/Athens/Agora/2160/primer.html

