
LOGIC-BASED
TRUTH MAINTENANCE

SYSTEMS

EECS 344

Winter, 2008

Overview

• Limitations of the JTMS

• LTMS basics

• Logical Specification of LTMS

• Boolean Constraint Propagation

• Interface to inference engine

• Example: Constraint solving

Logical import of JTMS clauses

• Definite clauses

• No negation

• Cannot directly say

• Must use encoding tricks to implement more
expressive logic

x1...xn  c

xy

Encoding negation in JTMS

• For each propositional node P, add extra
node for its negation.

• Install a justification for a contradiction for P
and its negation.

P

not P

Encoding Arbitrary Clauses

• Suppose we want to encode

• Could translate into a set of definite clauses

A BC

AA B C A

BB  A C B

CC ABC

All clauses require expansion

• Consider (implies P Q)

• Especially important in backtracking, if
information can be derived in different orders

PQ

QP

A1...Ai1  Ai1...An Ai

Solution: Use a more powerful
TMS

• Nodes have three possible labels:
– :TRUE

– :FALSE

– :UNKNOWN

• Justifications are disjunctive clauses:

p  q  r

• Each term in a clause has a sign, e.g.,
whether or not it is negated

Other LTMS modifications

• Assumptions work as before

• Premises work as before (i.e., they are nodes
justified by empty clauses)

• No contradiction nodes are necessary

• Contradiction detection is handled by clauses
being violated

AB

A

B

Logical Specification of LTMS

• Given
– a set of clauses C

– a set of assumptions A

• For any proposition P, label it
– :TRUE if it is derivable

– :FALSE if its negation is derivable

– :UNKNOWN otherwise

• If C & A are unsatisfiable, complain

• Produce explanations for every labelled node,
even when C & A unsatisfiable.

Boolean Constraint
Propagation

• Best algorithm for implementing an LTMS

• Sound

• Efficient

• Incomplete (but see Chapter 13!)

Basic Idea

• A clause is either
– Satisfied: Some node’s sign matches its label

– Violated: Every node’s sign is opposite that of its label

– Unit Open: One node is unknown, remainder have signs
opposite their labels.

– Non-Unit Open: Multiple unknown nodes, clause
unsatisfied.

• Observation #1: A unit open clause can be
satisfied by labeling it with its sign.

• Observation #2: A violated clause indicates a
contradiction.

• Observation #3: No other cases allow
inference.

Example

p  q  r

• P false, satisfied.

• P true, Q true, R false, violated.

• P true, Q true, R unknown: Unit open. Can
derive R as true

• P unknown, Q true, R false: Unit open. Can
derive P as false.

Graphical notation for LTMS

P

Q

R

F

F

T

Clauses dynamically simulate
definite clauses

P

Q

R

F

F

T

Clauses are multidirectional

P

Q

R

F

F

T

Clauses provide contradiction
detection

P

Q

R
!

F

F

T

Limitations of BCP

• Literal incompleteness

• Refutation incompleteness

• No formal characterization of when it loses

x  y

x y

x  y

x y

x y

xy

Inference Engine Interface

• Interpretation of labels

• How to specify clauses

• Adding data

• Queries

• Rules

• Contradiction Handling

Using more complex labels

• No longer have (:NOT P) in the database

• In querying (:NOT P), return opposite of
label of P

• When asserting/assuming (:NOT P), P
becomes a premise/assumption with label
:FALSE

Automatic translation into
clauses

• External system uses standard propositional
logic, with usual set of connectives (plus
taxonomy)

• LTMS code translates into appropriate set of
clauses (see normalize in ltms.lisp)

• Original form used as informant for
explanations

• Only time a statement with connectives is
entered into the database is if it is assumed.

Warning: A common bug

• The set of connectives is
– :NOT, :AND, :OR, :IMPLIES, :IFF, :TAXONOMY

• These aren’t connectives
– NOT, AND, OR, IMPLIES, IFF, TAXONOMY

– =>, ~

Adding Data

• assert!, assume!, retract!, rassert!

as before

• contradiction takes a list of nodes and
creates a clause that is violated, given their
current labels.

• assuming is a macro that provides an
environment with temporary assumptions

Queries

• Assertion-level queries (e.g., fetch,
referent) equivalent.

• Queries about beliefs now reflect new labels
(i.e., true?, false?, known?, unknown?)

• Explanation-exploring procedures similar to
before (e.g., why?, assumptions-of,
consequences, explore)

Rules

• Trigger conditions now reflect belief states
(e.g., :TRUE, :FALSE, but not :UNKNOWN)

• Otherwise identical to earlier systems

(rule ((:true (human ?x) :var ?h))

(rassert! (:implies ?h

(:and (mortal ?x)

(:not

(infallible ?x))))

:limited-creatures))

Contradiction Handling

• Orthogonal issue to type of TMS

• Before: lambda-bind single contradiction
handler.

• Not good enough!

Example

• Consider the following choice sets:
{A1, A2, A3}

{B1, B2, B3}

{C1, C2, C3}

• Suppose each set has its own contradiction
handler (Ha, Hb, Hc)

• Suppose we are exploring {A2, B2, C2}

• Suppose we find a contradiction whose
underlying assumptions is {A2, B2}.

• We’re in trouble -- why should Hc know what
to do here?

When does rebinding work?

1. All assumption-manipulating operations are
identified, and each provided with an
appropriate contradiction handler.

2. Assumption-manipulating operations must
proceed depth-first.

3. Relative Closure: Every consequence that
holds for the current set of assumptions that
might lead to a contradiction must be
computed before making more assumptions.

Relative Closure often
unrealistic

• Information can arrive unexpectedly

• The set of consequences can be
infinite

• Processing can be distributed

• Often works for toy problems

• But it should be abandoned very
quickly!

Solution: Stack-based
contradiction handling

• Organize assumption-manipulating
operations in depth-first fashion

• Each operation pushes a contradiction
handler when it begins, and pops it when it is
finished.

• When a contradiction occurs, check each
handler in turn to see if it is relevant.

• Implements chronological backtracking
within subset of relevant choices.

Assume a particular failure

Assume that you know how the

parts can fail

Assume that you know how the

parts work

Assume parts you know about

are the only relevant ones

Assume a repairable part

is the source of the problem

Example: Simple constraint
satisfaction problem

• Kind of problem often found in “logic
books” in newsstands

• Formally, set of variables whose values
range over a finite domain
(mathematical perspective).

• Formally, a set of attribute statements
about a collection of objects (logical
perspective).

Example: Remember the Marx
Brothers?

• Groucho, Chico, Harpo, and
…?

• One liked to expound,
another played the piano,
another liked animals…

• Which one was which?

Constraints

• The pianist, harpist, and talker are distinct
brothers.

• The brother who is fond of money is distinct
from the one who is fond of gambling, who is
also distinct from the one who is fond of
animals.

• The one who likes to talk doesn't like
gambling.

• The one who likes animals plays the harp.

More constraints

• Groucho hates animals.

• Harpo is always silent.

• Chico plays the piano.

Homework
• Problem 7(b), page 343

• Test problems:

SEND DONALD FIFTY BASE

+ MORE + GERALD +STATES +BALL

---------- -------- ------- -----

MONEY ROBERT AMERICA GAMES

• Hints:

– Think hard about representation first!

– Squeeze as much information out as possible when making each
assumption

• Optional: For background, see
http://www.geocities.com/Athens/Agora/2160/primer.ht
ml

http://www.geocities.com/Athens/Agora/2160/primer.html
http://www.geocities.com/Athens/Agora/2160/primer.html

