
Integrating Range and Object Data for Robot Navigation ∗

David Franklin and R. James Firby

Department of Computer Science
University of Chicago
1100 East 58th Street
Chicago, IL 60637

franklin, firby@cs.uchicago.edu

Abstract

Most sensors used for robot navigation fall into one of
two broad categories: range sensors that give approx-
imate distances to obstacles, and object-based sensors
that detect and locate objects of specific types. Each
type of sensor does a good job of detecting certain
kinds of obstacles, but fails to detect others. A ro-
bust robot navigation system must be able to inte-
grate data from both sources. We present an imple-
mented system that combines information from range
and object-based sensors into a single representation
that is used to reliably navigate a robot through an
office environment. The high level nature of the repre-
sentation allows easy integration of task-specific nav-
igation constraints. Results are given demonstrating
how the system is utilized on our mobile robot, Chip.

1 Introduction

Navigating an autonomous robot can be viewed as a
combination of three tasks: sensing the world, control-
ling the motor actuators, and doing some computation
to determine how the results of the first task should
affect the second. The first task involves activities like
reading sonar or infrared range responses, or examin-
ing camera images to get information such as free space
or the locations of specific objects. One problem with
any method for accomplishing this task is that all sens-
ing techniques are affected by noise and can easily be
fooled (for example, sonar echoes or visual texture on
the floor). As a result, an autonomous robot must uti-
lize multiple sensing techniques so that the fallibility
of one sensor can be compensated for by another. The
second task involves reliably and precisely controlling
the motion of the robot. That is to say, if the control

∗This work was supported in part by ARPA grant N00014-93-
1-1394, ONR grant N00014-93-1-0332 and ONR grant N00014-
93-1-1183.

system is told to move the robot with a specific trans-
lational or rotational velocity, it should be able to do
so with reasonable accuracy.
The third task is the topic of this paper: how to

use sensor data to decide how the robot should move.
Many techniques have been proposed to accomplish
this task and most fall into one of two classes:

• Reactive systems that maintain little or no state.
Action is derived (almost) directly from the sensor
readings. Examples of this include: using sonar
readings to define potential fields to be summed
with task specific potential fields to determine
what direction to move (Arkin 1990), and using
sonar readings to determine that a desired path
is blocked and which way around the blocking ob-
stacle is free (Firby, Christianson, & McDougal
1992).

• Deliberative systems that rely on a priori knowl-
edge of the environment in the form of some sort of
map. Sensors are used both to detect unexpected
obstacles and to keep the robot’s perceived posi-
tion accurate. Having a priori knowledge of the
environment allows a great deal of computation
to be done in advance, but if the knowledge is in-
correct or if the robot’s actual position becomes
sufficiently different from its perceived position,
much of that computation is wasted, and in the
worst case, out of date information can cause the
robot to collide with an obstacle. One example
of a deliberative system is (Payton 1990) where a
priori knowledge is used to create a gradient field
which is used in conjunction with a simple reac-
tive obstacle avoidance technique to choose how
to move the robot.

Neither of these approaches are adequate for what
we want to do with our robot: we want our robot to be
able to build and use rich representations of its envi-
ronment and still be able to react to dynamic changes.

David Franklin and R. James Firby – Integrating Range and Object Data for Robot Navigation 1

1.1 Goals for the navigation system

Our goal is to provide a means for moving our robot
quickly and reliably from one point to another using
information from numerous sensors and to create a rep-
resentation that can be easily utilized in accomplishing
other navigation tasks such as entering doorways. The
algorithm we have developed is designed to accomplish
this goal and incorporate the following characteristics:

• The system should utilize multiple, redundant
sensor types and averaging of sensor data when
appropriate to make it less susceptable to prob-
lems caused by sensor fallibility.

• It should be easy to incorporate a wide range of
a priori knowledge of the environment into the
representation such as map information and how
objects are expected to move.

• Objects being tracked should be reasoned about as
objects, enabling us to use conventions like staying
to the right of approaching people.

• The system should be sufficiently reactive to move
safely in a non-menacing environment; one con-
taining slowly moving objects, and subject to rea-
sonable sensor and actuator error.

1.2 Overview of the paper

This paper describes algorithms we have created for
providing a safe and reliable means of navigating our
robot from point to point in a somewhat cluttered en-
vironment. The sensing systems we use are sonar, vi-
sual free-space, a trash finder, and a trash can finder.
The sonar and visual free-space sensing systems update
occupancy grids and the other systems update object-
based representations. The navigation system utilizes
information from all these systems to determine how
to move the robot.

The information from all the systems is combined
into a set of geometric shapes that enclose all regions
that the robot should not travel in. These shapes are
considered obstacles, and each is given a clockwise or
counter-clockwise spin that determines which side they
must be passed on. At any moment, at most two of the
obstacles are relevant to the robot: the two obstacles
that the robot will have to pass between next (Slack
1990). The positions of these two obstacles (relative to
the robot) determine how the robot moves.

distance

heading

base-pt

width

Figure 1: Range sensor readings.

2 Range Sensors and Occupancy
Grids

Range sensors provide the navigation system with in-
formation of the following form: “The closest obstacle
in this approximate direction is at this distance.” Two
types of range sensors are currently used by the nav-
igation system: sonar and visual free-space. Both, to
varying degrees, output noisy and unfocused data. To
overcome this, the navigation system needs to average
the data over time to get more stable and accurate
results.

We use occupancy grids to facilitate this averaging.
An occupancy grid is a data structure that represents
how certain it is that a specific (x,y) coordinate is oc-
cupied by an obstacle. To do this, the world is repre-
sented as a two-dimensional array; each element of the
array corresponds to a specific square on the surface of
the actual world, and its value represents the certainty
that there is some obstacle there. When new informa-
tion about the world is received, the array is adjusted
based on the nature of the information.

It is important to realize that, in the grids we use,
the values in the array are not actual probabilities; the
properties of our sensors and robot’s environment are
not known well enough to create actual probabilities
for sensor responses. As a result, updating an occu-
pancy grid consists of simply increasing the occupancy
grid values in the areas that the data suggest are occu-
pied, and decreasing values in the areas that the data
suggest are unoccupied. More details about the use of
occupancy grids can be found in (Borenstein & Koren
1991; Elfes 1989).

The data that a range sensor uses to update an occu-
pancy grid describes a wedge on the floor. The wedge
is defined as shown in Figure 1.

One type of range sensor used on our robot is sonar.
A reading from a given sonar indicates that a cone
extending out from the sensor is empty out to the

David Franklin and R. James Firby – Integrating Range and Object Data for Robot Navigation 2

 �� ��

���
���
���

(a) (b) (c)

Figure 2: Treating free-space as a range sensor. (a)
A typical situation that the robot might find itself in.
(b) An image from the robot’s camera. A column of
free-space is lightly shaded. (c) A bird’s-eye view of
the scene with the free-space column translated onto
the floor.

distance given by the reading, and that, somewhere
along the semi-spherical surface at the base of the cone,
there is an obstacle. To use a sonar reading in a two-
dimensional occupancy grid, it is translated into a pie-
wedge shape on the floor. The accuracy of the sonar
readings depends greatly on what material the obstacle
is made of; the obstacle must reflect the sound wave
back to the sonar sensor for it to be detected. Noise
and instability occur when obstacles reflect sonar else-
where and hence become invisible at certain angles.
Another range sensor is provided by a visual free-

space algorithm (Horswill 1993) which divides a cam-
era image into columns and then finds the closest ob-
stacle in each column. Each column is then treated as
an individual range sensor. Figure 2 shows how a col-
umn in a camera image is translated into a wedge on
the ground. The free-space algorithm used on Chip

works by finding all the edges in a camera image,
thresholding the edges to reduce noise, then searching
each column from the bottom until an edge is found.
Heading and distance values are then calculated by
translating the image coordinates of the lowest edge in
each column into floor coordinates.

2.1 Updating the occupancy grid

Using range readings to update an occupancy grid re-
quires an algorithm to map readings into correspond-
ing changes to the grid array. The algorithm we use
focuses on the following characteristics:

• Correctness: The updating that is done should
be in agreement with the sensor response: regions
that the sensor indicates are free should have their
values reduced and regions that the sensor indi-
cates are occupied should have their values in-
creased.

UpdateOGrid(g, point, r, theta)

1. Decrease the value for each square in the interior
of the pie shape defined by point, r and theta by
DecrementStrength.

2. Collect all the squares along the circular edge of the
pie shape into a set S. Set Sum to be the sum of the
values of all array elements in S.

3. For each square s ∈ S, set:

val(s) := val(s)+dUpdateStrength×val(s)÷Sume

4. Clip the value for each square in S to fit within the
range of acceptable pseudo-probabilities.

Algorithm 1: The occupancy grid update algorithm

• Stability: When the occupancy grid accurately
represents the actual world, changes to the oc-
cupancy grid as a result of new sensor readings
should be minimal.

• Reactivity: Sudden changes to the world that af-
fect the safety of the robot should quickly appear
in the occupancy grid.

The algorithm that we use (detailed in Algorithm 1)
performs well with regard to all of these characteris-
tics, can be computed efficiently, and keeps the number
of empirical parameters to a minimum. The algorithm
looks at the two regions defined by the range reading:
the interior of the wedge (thought to be empty), and
the area around the curved edge of the wedge (thought
to contain at least one obstacle). Step 1 decreases
the values in this first region and step 3 increases at
least some of the values in the second. The stability
of the algorithm is achieved through the proportional
increases defined by step 3. This step attempts to use
the range reading to confirm and strengthen what is
already thought to be true in the world. Finally, the
reactivity of the algorithm is achieved due to the fact
that UpdateStrength is independent of the distance
specified by the range reading. This means that, with
readings close to the robot, the occupancy grid values
are increased more rapidly because the pie edge con-
tains many fewer points.

For our implementation, we set DecrementStrength
to be 1, UpdateStrength to be 10, and the range of
acceptable pseudo-probabilities to be [0,9].

David Franklin and R. James Firby – Integrating Range and Object Data for Robot Navigation 3

3 Object-based sensor represen-
tation

Our robot also uses sensing algorithms that are quite
different from the range sensors described in the pre-
vious section. We use vision-based sensing algorithms
that detect instances of specific classes of objects. One
algorithm finds trash bins in an image using Hausdorff
edge matching (Huttenlocher & Rucklidge 1992) and
the other finds and identifies cups, cans and crumpled
pieces of paper using statistics of connected compo-
nents in an edge image (Firby et al. 1995). This kind
of sensing is fundamentally different from the range
sensors in that:

• It identifies specific types of objects (for instance,
cans, cups or bins.)

• It provides no evidence for a space being unoccu-
pied; it only says that a particular location is free
of objects of the specific type it is looking for.

• The locations of the objects found can be com-
puted quite accurately.

3.1 Maintaining object-based repre-
sentations

The object-based representations used with our robot
maintain lists of the objects that have been sensed
and the world coordinates of where they were found.
When new information comes from an object sensor,
it is compared with previously sensed objects of the
same type to see what objects are new and which have
probably already been seen. Each type of object has
a coreference distance d associated with it. So, if an
object is sighted within a distance d of a previously
sensed object of the same type, it is assumed that the
sighting is actually of that known object. If no match
is found, it is considered to be a new object and is
added to the set of objects.
When a new object measurement matches an old

one, the position for that object is updated using a
Kalman filtering approach of averaging:

xi := c× newx+ (1− c)× xi−1

By choosing different values for c (in the range [0,1]) for
different types of objects, information about the char-
acteristics of objects can be used to help track them
better. For example: a piece of furniture should be
expected to remain motionless and so a small value of
c should be used, while with a very mobile object, a
value of c near 1 should be used. This simple tracking

method keeps positions stable in the face of small sen-
sor error, allows slowly moving objects to be tracked,
and compensates for accumulated odometry errors.

4 Navigation

Given the representations outlined in the previous sec-
tions, navigation becomes a task of planning a path
through the obstacles and then actually following the
path. To do this, an object-based representation that
incorporates the information from all the individual
representations is constructed. Then path planning is
done by searching for a sequence of line segments that
connect the robot’s current location to the goal loca-
tion while avoiding obstacles. Finally, as the robot is
moving, it is sent pairs of points to go between. The
sequence of pairs of points loosely define a path for the
robot to follow.

4.1 Navigation Templates (NaTs)

(Slack 1990) presents a method for controlling a robot
as it navigates through an environment cluttered with
multiple obstacles. The technique assigns a “spin” to
each obstacle in the environment, specifying on which
side the robot should pass 1. A path through the en-
vironment is defined by how the obstacles are spun.
These paths are sketchy, telling the robot to do things
like “pass this obstacle on the left, then go between
these two obstacles . . . ” allowing greater flexibility in
the face of sensor and actuator noise.
While the robot is navigating through the envi-

ronment, it need only consider at most two obsta-
cles (called local navigation objectives) that constrain
where the robot can safely move. One, the clockwise
bound, is the next obstacle that the robot must pass to
the left of, and the other, the counter-clockwise bound,
is the next obstacle for the robot to pass to the right of.
After a bound is passed, it is replaced by the next ap-
propriate obstacle. As the robot continues from bound
to bound, it follows the sketchy path defined by the ob-
stacle spins.

4.2 Circular paths

The primary way that our method differs from Slack’s
work is that, due to the way our robot moves, we use
circular segments (rather than straight lines) to de-
scribe the paths the robot travels on. Our robot is
controlled by setting translational and rotational ve-
locities over intervals of time, so, in order to travel

1These are called modifier navigation templates (or m-NaTs)
in Slack’s research.

David Franklin and R. James Firby – Integrating Range and Object Data for Robot Navigation 4

Figure 3: A simple example of circular paths. The arcs
show the bounding paths.

on a path of line segments, the robot would have to
follow a repeated cycle of stopping, rotating to align
with the next segment and then moving forward to
the end of that segment. This poses two problems for
our robot: turning in place on our lab’s floor is diffi-
cult due to a carpet, and all the starting and stopping
produces a very jerky motion. Building paths out of
circular segments remedies these problems. Figure 3
shows the family of circular paths that could be used
to go through a set of obstacles.

4.3 Creating a single, object-based rep-
resentation

A NaT-based navigation algorithm requires a represen-
tation of the geometric regions the robot is to avoid.
So, as the first step in our navigation technique, we
combine the relevant information from our occupancy
grids and object-based representations to create a sin-
gle object-based representation.

Each object in the robot’s object-based representa-
tions has a simple “footprint” such as a circle that de-
fines the region it occupies. From the occupancy grids,
we can compute convex polygon footprints that contain
all the unsafe regions in each occupancy grid. Convex
polygons were chosen as the geometric shape represen-
tation because they provide a rich set of shapes, effi-
cient convex hull algorithms exist, and the properties
needed by the navigation algorithms (knowing whether
a given line segment comes within a given distance of
the object, and knowing what the heading to the left
and right sides of the object are from a given point)
are easily computed. The process we use to convert
the occupancy grids into a set of objects is outlined in
Algorithm 2.

OGrid->Objects(ogrids, start-pt, end-pt)

1. Choose a region of interest. This region should contain
both the current location and the desired destination.
All path planning will be restricted to this region. For
our robot, we choose a circle where the start-pt and
end-pt are towards opposite sides of the circle.

2. Combine all the occupancy grids into a single binary
occupancy grid, where 1 represents unsafe and 0 rep-
resents safe. This occupancy grid just contains the
region of interest. For our robot, we mark a square
as unsafe if any of the individual occupancy grids
square’s values are above the default value. Note: if
more specific knowledge of the fallibility of the sen-
sors is known, it can easily be incorporated into this
step. For example, if one sensor is very reliable at in-
dicating when an area is safe, the “safe” values in its
occupancy grid should override the “unsafe” values in
another, noisier, occupancy grid.

3. Find all convex hulls in the binary occupancy grid and
store them as collections of boundary points. Each
collection of boundary points is included as a single
object in the final, object-based, representation.

Algorithm 2: Converting occupancy grids into a set of
objects.

4.4 Setting obstacle spins

While the robot is navigating, each object must have
a spin assigned to it, specifying which way the robot
should go around it. The combination of these spins
specifies the path that the robot should take. The algo-
rithm we use to set spins for the obstacles is a heuris-
tic search through the space of sequences of straight
line segments defined by legal combinations of obsta-
cle spins (described in Algorithm 3).

4.5 Local Navigation Objectives

Once all obstacles have been assigned spins, the robot
moves from one pair of local navigation objectives to
the next until either the new sensor data indicates that
the current path is no longer valid (prompting recom-
putation of the obstacle spins) or the robot reaches
its goal. The process of choosing local navigation ob-
jectives is a simplification of that used by Slack with
the substitution of circular segments for line segments.
All obstacles that are either in front of the robot or
in between the robot and the goal are sorted based on
how far away they are from the robot. Then a circu-
lar path is chosen that is compatible with the largest
subset of the obstacles and their spins. The local navi-
gation objectives are the obstacles that restrict the set

David Franklin and R. James Firby – Integrating Range and Object Data for Robot Navigation 5

SetObstacleSpins(obstacles, start, end)

1. Set the initial interval to be a segment from start to
end.

2. Find the first obstacle that blocks the interval. If none
is found, then the path over the interval is simply a
straight line and a complete path has been found.

3. If there is an obstacle, “bend” the interval around the
obstacle: choose a point to the side of the obstacle
and replace the interval with the two intervals that
connect the start to this point and that connect this
point to the end. The interval will be bent in two
ways: around either side of the obstacle.

4. For each of the two ways, perform steps 2 through 4 on
each of the new intervals. This is done as a heuristic
search based on an optimistic estimate of the final path
length.

5. As soon as a path is completely defined (every interval
has been looked at), each obstacle in obstacles is
given a spin that is compatible with the chosen path.

Algorithm 3: Setting the spins for a set of obstacles.

of compatible circular paths the most.

Actual navigation then consists of choosing a circu-
lar path that is consistent with the current local nav-
igation objectives and following that path. The local
navigation objectives are changed as the robot moves
past them, or as new obstacles are sensed. In Figure 3,
the two smaller circles are the local navigation objec-
tives and any circular path between the two bold arcs
would be legal. After the robot passes the lower cir-
cle, the larger circle will replace it as a local navigation
objective.

The use of local navigation objectives produces sev-
eral benefits for the navigation system:

• The algorithm that the robot uses to determine
how to actually set the motors on the base is very
simple and only requires the positions of the (two)
local navigation objectives, how close it is safe to
get to them, and the position of the goal. This
allows the motor controller to run in a very tight
loop, which means the robot drives very accurate
paths.

• The low-level controllers do not have to deal with
the complicated representations of the navigation
system.

5 Experiments

The algorithms and data structures outlined in the pre-
vious sections have all been successfully implemented
for our mobile robot, Chip. Before describing the ac-
tual experiments, we will provide some necessary in-
formation about the robot and the control and sensing
systems it uses.

5.1 The robot

Chip is actually the combination of a network of com-
puters and a physical robot. All image processing and
high-level reasoning systems are implemented on exter-
nal computers while computers on board are respon-
sible for controlling the physical systems on the robot
(arm, base, pan-tilt head and sonars.) Communica-
tion between on-board and off-board computers is done
through a radio ethernet connection.
The robot moves via a base that is controlled by

setting specific translational and rotational velocities.
The robot is equipped with eight sonars, with place-
ment biased towards the front of the robot. New sonar
readings are acquired twice a second. Visual images
are collected via stereo cameras mounted on a pan-tilt
head and transmitted to the image-processing comput-
ers. New free-space readings are generated approxi-
mately twice a second.

5.2 Implementation details

The navigation system oscillates between two states:
the first initializes and starts a set of processes that do
the navigation, and the second deals with the problem
situation where the robot gets too close to an obstacle
and must back or turn away from it (due to sensor
delay or objects moving to block the robot’s path.)
The set of processes that run in the first state (basic

navigation of the robot) are as follows:

ReportSonarValues: This process repeatedly polls
the sonars and updates the sonar occupancy grid
with the sonar readings.

ReportFreeSpaceValues: This process repeatedly
calls the free-space vision routine and updates the
free-space occupancy grid with the results.

TrackSmallObjects: This process repeatedly calls the
small object finder and updates the object-based
representation with the results.

SetNavObjectives: This process builds the compos-
ite, object-based representation, plans a path
through it, and sends the local navigation objec-
tives (based on the robot’s position) to the robot.

David Franklin and R. James Firby – Integrating Range and Object Data for Robot Navigation 6

Chair

Cereal Box

Pillar

Cans

(a)

(d)(c)

(b)

Figure 4: Detail of the Experiment 1. (a) Layout of
the environment. (b) The final sonar occupancy grid.
(c) The final free-space occupancy grid. (d) The fi-
nal object-based representation overlayed on the two
occupancy grids.

SetSpeed: This process, based on the amount of
empty space in front of the robot, sends a max-
imum safe traveling speed for the robot. In the
case that the robot is too close to an obstacle,
this behavior will tell the robot to stop and enter
the second state.

In the state where the robot is too close to some ob-
stacle, six paths are projected (forward or backwards,
going straight or turning left or right) and whichever
path will take the robot to safety quickest is selected.
Then, the robot is instructed to follow that path until
the robot is a safe distance from the obstacle it was
too close to. Once it is free, the robot will enter the
first state and continue navigation.

5.3 Experiment 1: Combining informa-
tion

The first experiment demonstrates how information
from three different sensing sources is combined. Chip

drove through an environment consisting of two pop
cans, a crushed pop can (detectable by the free-space
visual routine but not the can finder), a cereal box,
a pillar, and a chair. The environment was set up so
that Chip could safely drive straight forward for two
meters.

Chip rolled forward at 5 cm/sec for a distance of two
meters while running ReportSonarValues, Report-
FreeSpaceValues, and TrackSmallObjects. Figure 4
shows how the three sources of information combine
to make the object-based representation. The medium

Pillar

Chair

Beams

(a) (b) (c)

Figure 5: Detail of the Experiment 2. (a) Layout of the
environment. (b) Early composite representation. The
line indicates the path that the navigation system has
chosen. (c) The final composite representation. Note
that there are no occupancy grid obstacles outlined
because the robot is close to the goal.

gray areas towards the edges of the occupancy grids
are where Chip has not done any sensing; darker ar-
eas are where Chip thinks obstacles are; lighter ar-
eas are where Chip thinks there are not any obstacles.
Comparing the sonar and free-space occupancy grids
reveals how in some cases the two sensing techniques
are in agreement and in others how one sensing tech-
nique compensates for the weakness of another. The
polygons (outlined in gray) outline the obstacles found
in the occupancy grids.

5.4 Experiment 2: Navigating in a
crowded environment

The second experiment demonstrates all of the com-
ponents of the navigation system working together to
guide the robot through an environment containing
two metal beams, a chair and a pillar (as shown in
Figure 5.) The robot had to drive in an S-curve to
avoid the obstacles between it and its goal. The chair
was positioned such that the free-space routine would
fail to accurately find its footprint (the chair’s base
consists of two parallel rails and the chair was oriented
such that there was free-space visible under the chair.)

Chip moved at 5 cm/sec, covering a distance of
about 5 meters while running ReportSonarValues and
ReportFreeSpaceValues. The second picture shows
how the sonar and free-space occupancy grids put the
chair in two different places (the free-space routine in-
correctly located the chair too far to the upper right.)
The sonar compensated for the free-space’s fallibility
in dealing with overhangs. The third picture shows
the composite representation at the moment that Chip

reached the goal. All the objects in the environment
are represented in the occupancy grids.

The sequence of events by which the robot went from
the start to the finish was as follows:

David Franklin and R. James Firby – Integrating Range and Object Data for Robot Navigation 7

Figure 6: Detail of the Experiment 3. Obstacle spins
were set such that the robot had to drive between the
two cans.

• Chip located the chair and the first beam and
decided to pass them to the left (the clockwise
bound was the leftmost point of the beam.)

• As Chip approached the beam and proceeded
around it, it saw the second beam and decided to
pass it to the right (the counter-clockwise bound
was the rightmost point of the second beam.) At
this moment, Chip had two local navigation ob-
jectives.

• OnceChip passed the first beam, it was able to see
the full extent of the second beam and its counter-
clockwise bound was updated accordingly. Also,
the clockwise bound was removed because the first
beam (behind Chip) was no longer an obstacle to
Chip.

• Once Chip passed the second beam, the counter-
clockwise bound was removed, and Chip was able
to drive directly to the goal.

5.5 Experiment 3: A simulated door-
way

The third experiment demonstrates how task-specific
navigation constraints can be integrated into the nav-
igation system. The robot was placed in an environ-
ment with 2 cans which were treated as the sides of a
door frame. Spins were enforced on the two cans so
that the robot was forced to drive between them, even
though the shortest path to the goal would be to drive
to the left side of both of them.

Chip moved at 10 cm/sec, covering a distance of
about 5 meters while running TrackSmallObjects.
Figure 6 shows the smooth path that Chip traveled
in navigating between the two cans.

6 Conclusion

This paper describes a technique for fusing the infor-
mation gathered from a number of differing sensors into

a single representation that can be used in a wide range
of navigation tasks. Our technique avoids a problem
faced by most multiple behavior navigation systems,
where different behaviors may provide conflicting infor-
mation about what is the right action to take, thereby
necessitating some sort of arbitration. Since all navi-
gation is based on a single data structure, there is no
conflicting information about where to go – all the dif-
ferent sources are cooperating instead of competing.

Incorporating a priori knowledge into the represen-
tation can be done in one of two ways. Known objects
can be inserted into one of the object-based represen-
tations, with the advantage that they can then be rea-
soned about as objects of specific types, but with the
disadvantage that in situations where the knowledge is
incorrect, it may be very difficult to detect and correct.
A more conservative way to incorporate a priori knowl-
edge is to add the “footprints” of known objects into
the occupancy grids. This strongly biases the system
initially, but allows for later information to over-rule
the old.

Finally, outside the realm of navigation, occupancy
grids can be used to locate regions of interest in which
to use more expensive sensing operations. Because
the occupancy grids represent spaces that are occupied,
those regions marked occupied that are disjunct from
the objects in the object-based representations are the
most likely to contain new objects that the robot may
be interested in.

6.1 Future work

In the experiments shown in this paper, there is no
active sensing; the cameras are aimed straight ahead
and are looking down in front of the robot. However,
the local navigation objectives give the robot natural
areas to focus much of its attention. Having the robot
direct its attention to the local navigation objectives
and occasionally focus on other relevant areas (looking
towards the goal) would be likely to allow the robot to
safely travel faster and also should allow the robot to
pass closer to obstacles because their locations would
be more accurate.

Also, this navigation system is intended to be used
for point-to-point navigation in a relatively small
(around 5 meters square) area. As a result, in a larger,
more dense environment, performance will suffer due
to the large number of obstacles the path planner will
have to deal with. In fact, due to the use of convex
polygons for representing obstacles in the occupancy
grids, there are situations where the path planner may
just fail (for instance, a long, narrow L-shaped hall-
way.)

David Franklin and R. James Firby – Integrating Range and Object Data for Robot Navigation 8

As a result, we are currently working on incorporat-
ing the navigation system into a large-scale navigation
system that can reason about larger objects such as
hallways, rooms and doorways. The small-scale navi-
gation system will function in an area centered around
the robot. The large-scale navigation system will give
information about locations of walls (and give them
spins) to the small-scale navigation system, effectively
functioning as an additional object-based sensor.

References

Arkin, R. C. 1990. Integrating behavioral, perceptual,
and world knowledge in reactive navigation. In Maes,
P., ed., Designing Autonomous Agents. MIT Press.

Borenstein, J., and Koren, Y. 1991. The vector
field histogram — fast obstacle avoidance for mobile
robots. IEEE Transactions on Robotics and Automa-

tion 7(3):278–288.

Elfes, A. 1989. Using occupancy grids for mobile
robot perception and navigation. IEEE Computer 46–
57.

Firby, R. J.; Kahn, R. E.; Prokopowicz, P. N.; and
Swain, M. J. 1995. An architecture for vision and
action. In Fourteenth International Joint Conference

on Artificial Intelligence, 72–79.

Firby, R. J.; Christianson, D.; and McDougal, T.
1992. Fast local mapping to support navigation and
object localization. In Sensor Fusion V. Boston, MA:
SPIE.

Horswill, I. 1993. Polly: A vision-based artificial
agent. In Eleventh National Conference on Artificial

Intelligence. Washington, DC: AAAI.

Huttenlocher, D. P., and Rucklidge, W. J. 1992. A
multi-resolution technique for comparing images us-
ing the haussdorf distance. Technical Report CUCS
TR #92-1321, Cornell University Department of
Computer Science.

Payton, D. W. 1990. Internalized plans: A represen-
tation for action resources. In Maes, P., ed., Designing
Autonomous Agents. MIT Press.

Slack, M. G. 1990. Situationally driven local naviga-
tion for mobile robots. Technical Report JPL Publi-
cation 90-17, Jet Propulsion Laboratory.

David Franklin and R. James Firby – Integrating Range and Object Data for Robot Navigation 9

