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Abstract

As autonomous robots become increasingly adept at
performing simple tasks like moving from place to place
and picking up and delivering objects, it is becoming
apparent that an important area of robotic research
is that of developing natural interfaces for controlling
them. In the context of building a robot “waiter”,
we demonstrate the use of the Perseus architecture for
gesture recognition, teamed with the Animate Agent
architecture for tightly coupled perception and action.
Of particular significance is the ease of implementing
this task utilizing the architectures and routines we
have already created for other tasks.

1 Introduction

Designing natural and convenient human-machine in-
terfaces is an important and never-ending struggle for
designers of technology. One of the most challenging
and interesting domains in which to attempt this task
is in the context of human / mobile-robot interaction,
where giving the robot as many human-like capabilities
as possible makes for the most natural interface.

In previous work, we developed the Perseus visual
architecture and demonstrated the use of Perseus in
recognizing and interpreting human pointing gestures
(Kahn et al. 1996)(Kahn & Swain 1995). The design
of the system was to develop re-usable visual represen-
tations and operators for creating them, that could be
used in a number of gesture recognition tasks. The sys-
tem was also designed to make maximum use of context
such as might be supplied by a reactive control system,
as described below.

*Many thanks to the others who contributed to this work,
including Peter Prokopowiz and the students of CS 359: Shan-
non Bradshaw, Mazin As-Sanie, Mark Langston, Jiayu Li and
Alain Roy. This work was supported in part by ONR contract
N00014-93-1-0332 and by ARPA contract N00014-93-1-1394.

In related work, we have designed an architecture
for tightly-coupled perception and action, called the
Animate Agent architeture, and demonstrated its use
in a “clean up the office” task that has been the focus of
successive robot competitions (Firby et al. 1995)(Firby
et al. 1996). In the clean-up task, the robot is let loose
in a small room with soda cans and paper cups which
are to be picked up and sorted into trash and recycling
bins.

This paper describes work on a research project that
utilizes gesture recognition to enable our robot to serve
as a waiter in a simplified restaurant domain. The
robot observes the restaurant patron, waits until he
performs a gesture indicating that he wants the robot
to do something, and then attempts to make the patron
happy by meeting his needs. The robot waiter is able
to:

e Perform visual identification of gestures that are
interpreted to mean the requesting of or offering
of an object.

e Visually track a person and locate his feet.
e Safely navigate to a person.

e Physically hand objects to and receive objects
from a person.

This research demonstrates the flexibility and ex-
tensibility of our current work on the Perseus visual
architecture and the Animate Agent architecture, as
we were quickly (within two months) able to program
our robot to accomplish a new task. As we had hoped
in previous papers (?77), the new task allowed a great
deal of our old routines to be utilized and required a
minimal amount of additional programming.

2 Perseus

Perseus(Kahn et al. 1996)(Kahn & Swain 1995) is a
purposive visual architecture that has been used to rec-
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ognize gestures performed by people in non-engineered
environments. Knowledge about the task and envi-
ronment is used at all stages of processing to best in-
terpret the scene for the current situation. Once the
visual operators are chosen, contextual knowledge is
used to tune them for maximal performance. Redun-
dant interpretation of the scene provides robustness to
errors in interpretation. Fusion of independent types
of information results in increased tolerance when as-
sumptions about the environment fail. And windows
of attention are used to improve speed and remove dis-
tractions from the scene. Reuse is a major issue in the
design of Perseus, information about the environment
and task is explicitly represented so it can easily be
used in a variety of tasks. A clean interface to Perseus
is provided for symbolic higher level systems(Firby et
al. 1995) like the RAP reactive execution system(Firby
1989).

The Perseus system is composed of six types
of components: feature maps, object representa-
tions(ORs), markers(Chapman 1991), visual rou-
tines(Ullman 1984), a segmentation map, and a long
term visual memory(LTVM). A reactive execution sys-
tem(Firby 1989) interfaces to Perseus by calling visual
routines(Ullman 1984)(Chapman 1991). Visual rou-
tines are the top level structures in the Perseus sys-
tem, addressing complex visual tasks like waiting for
a person to enter the scene or finding the area a per-
son points to. When visual routines are called, they
are passed parameters. These parameters may include
symbols used by the higher level system to reason
about objects in the world like a person or a soda can.

The LTVM provides the translation between sym-
bols used by the higher level system and the data
needed to represent real-world objects. Visual routines
use the LTVM to find an OR for the symbols passed
to them. They then use ORs to understand which ob-
jects are in the scene and what the properties of those
objects are.

ORs are encapsulations of data about a particular
object and methods for examining the object repre-
sented. When a method is called, it returns informa-
tion that the visual routine may use to understand the
scene. Typical methods locate a person’s hands, or
find a soda can in a specified area. The methods of an
OR have access to higher level information so they can
select different operators for interpreting the scene de-
pending on the situation. ORs are not static represen-
tations, instead the data they contain can be modified
by their methods. For instance, a method for locating
a person may record the color of the person’s clothing
so he can more easily be located later.

Segmentation is often facilitated by knowing which

points in the scene are mot part of the object. This
information can be known if other ORs have performed
segmentations. To support this, a global segmentation
map is maintained. Each time an OR segments an
object, the segmentation map is updated. This map
may then be used to decide where to look or where not
to look.

When an OR needs to track something, it instanti-
ates a marker(Chapman 1991) and parameterizes the
marker with a tracking function. Visual routines and
ORs may then query the marker when they need to
know where the object is. Markers track objects until
either they lose them or a signal is received explicitly
saying to stop tracking.

ORs and markers base their computations on a set
of feature maps rather than directly upon the frames
grabbed from the camera. Feature maps are retino-
topic interpretations of the scene detecting the pres-
ence of edges, motion, and other local properties. They
are parameterized by ORs and markers based on higher
level information about the environment and goals of
the agent to more effectively recognize features of in-
terest.

3 The Animate Agent architec-
ture

Our robot is controlled by the combination of a hi-
erarchical reactive planner (the RAPs system) and a
low-level system of skills (the CRL system.) Together,
the two components make up the Animate Agent ar-
chitecture (Firby et al. 1995).

The CRL system (Chicago Robot Language) allows
for the parallel execution of low-level skills. These fa-
cilitate control of the robot’s actuators and provide an
interface with the sensing systems of the robot (in-
cluding Perseus.) Skills are enabled in sets which com-
municate with each other by setting an reading global
channel values, allowing for the creation of tight servo
loops for such activities as tracking and navigating.

The RAP system (Reactive Action Package) pro-
vides an interpreter for “sketchy” plans — plans where
some steps must be determined at run-time. It main-
tains a memory containing what is believed to be true
about the world, which is used to determine what
method to use for a plan. The RAP system also con-
figures and controls the CRL system, enabling sets of
skills to be run in parallel. The CRL system commu-
nicates with the RAP system by sending signals that
describe significant changes in state (for example “I
have arrived at the goal,” “My hand is now empty,”
or “I can no longer find the object I was tracking.”)
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These signals give the RAP system the information it
needs to monitor the progress of its plans.

4 Recognizing requests for ser-
vice

In the context of the robotic waiter task, two requests
can be made of the waiter. The patron may request ei-
ther that a soda be delivered to him or that an empty
soda be taken from him. The patron communicates
these requests by gesturing to the robot: a patron ex-
tending an empty hand is understood to be requesting
a soda can and a patron extending a hand holding a
soda can is understood to be requesting that the can
be taken away.

4.1 Locating and tracking the patron

The first step in the task involves determining when
a restaurant patron has entered the area and then ob-
serving him until he gestures that the robot ought to
do something. Determining when someone has entered
the restaurant is accomplished by telling the Perseus
system to instantiate an OR for the person to be
waited upon (using the wait-for-patron-request vi-
sual routine.) The OR is a generic instance of a person
OR — one that contains no details about such things
as the person’s body color or position. This OR has a
locate method which is used to find a person in the
scene(Kahn et al. 1996). This method assumes that
people are the only objects that move in the scene and
waits for a region of motion. When the locate method
is successful, it means that a patron has been located
and can be tracked.

Once the patron is found, the person OR’s segment
method(Kahn et al. 1996) is called to segment him
from the rest of the scene, locate his body parts, and
extract the colors of his body. The initial segmenta-
tion of the person is done by first deciding where not to
look. ORs for the lights, floor, and background(Kahn
et al. 1996) are instantiated which update Perseus’ seg-
mentation map with the pixels corresponding to these
objects. Once the non-interesting regions of the scene
have been identified, the connected components in the
resulting regions are combined to produce a segmenta-
tion of the person.

The color histogram of the segmentation is stored
in the person OR. A marker is placed on the cen-
troid of the segmentation. This marker parameterizes
the color feature map to backproject(Swain & Ballard
1991) the person’s body colors onto the scene. The
body is tracked as the peak in this map, ignoring re-

gions marked as background, floor, or lights in the seg-
mentation map.

Next, the top, extreme left, extreme right, and bot-
tom of the segmentation are marked as the head, left
hand, right hand, and feet respectively. Each of these
markers are segmented as a small region around their
current locations. As they are tracked, they reposition
themselves on the top, left, right, or bottom of that
segmentation using constraints on how far they can be
from each other relative to the person’s height.

4.2 Observing the patron’s gesture

Once the person has been located and his body parts
are being tracked the wait-for-patron-request vi-
sual routine monitors the hand positions until one is
held stationary and out from the patron’s side for a
short time. After this gesture occurs the person’s hand
is examined to see whether it is holding anything. This
is determined by computing what percentage of the
hand pixels are “skin colored.” If few of the pixels
are skin colored, then the hand must be holding some-
thing that occludes the hand and conversely, if there is
something sufficiently large in the hand, it will occlude
much of the hand. A threshold on the percentage of
pixels in the hand segmentation is used to determine
whether or not there is something in the hand.

The method we use to identify skin colored pixels
is based on Buluswar’s work on non-parametric classi-
fication of pixels under varying illumination(Buluswar
& Draper 1994). A multivariate decision tree (MDT)
algorithm(Draper, Brodley, & Utgoff 1994) is used to
separate the skin colored region of the color space from
the rest. Training data was taken from hand cropped
images. Figures 4.2 and 4.2 show the skin detection
results on two images.

Figure 1: Recognizing a hand holding a can.

The task of the multivariate decision tree algorithm
is to find planes in RGB space that separate skin col-
ors from other colors. It is assumed that skin color
is contained within a convex shape in RGB space that
contains few, if any, non-skin colors. Given sets of skin-
colored and non-skin-colored RGB values, the MDT
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Figure 2: Recognizing a hand without a can.

algorithm uses the recursive least squares method of
error reduction to place the multivariate planes divid-
ing the color space. Our iterative training technique
was to take pixels that were misclassified by the MDT
produced by the previous iteration and use them as
the next iteration’s training data. Most of the misclas-
sified pixels had color values lying close to the region
boundary and so provided a more accurate definition
of the boundary.

After many iterations of computing the skin color
MDT, a accurate definition of the skin-colored region
in RGB space was found. To facilitate fast identifica-
tion of skin-colored pixels, the information stored in
the MDT was transferred to a lookup table, a binary
array that maps RGB color values into a determination
of whether or not they are skin colored.

Perseus’ color feature map(Kahn et al. 1996) was
extended so that in addition to performing color his-
togram backprojection, it could accept a color lookup
table as an argument and perform backprojection from
that table. To see if the person’s hand is empty the
wait-for-patron-request visual routine parameter-
izes the color feature map with the skin lookup table
and examines the map in a small region surrounding
the marker on the person’s hand that is gesturing. If
more than 1/3 of the pixels in the person’s segmen-
tation around the hand are skin-colored, the hand is
considered to be empty. Otherwise it is considered to
be holding an object.

5 Preparing to serve the patron

Once the patron has requested service and the system
has determined what type of service the patron is re-
questing, the robot must service that request. This in-
volves either locating a can and delivering it to the pa-
tron (the patron is requesting something) or approach-
ing the person and taking a can from him.

5.1 Finding an object for the patron

When the patron requests an object, the robot assumes
that he wants a soda can and so it must find a soda can
to give him. If the robot is already holding a soda can,
then it will give that can to the patron. Otherwise, the
robot must look around for one.

The robot repeatedly selects areas on the floor that
it has not looked at yet, pans its cameras to look at
them, and uses the Perseus system to detect and locate
all soda cans in its field of view. Once the robot has
located a can, it will move to the can and visually
align with it. Finally, the robot lowers its arm, rolls
forward until the can is in its gripper, stops, and closes
its gripper around the can. With the can in its gripper,
the robot is then ready to fold up its arm and deliver
the soda can to the patron. For a detailed description
of how the robot locates and picks up cans (used in
previous years’ IJCAI robot competitions,) see (Firby
et al. 1995).

5.2 Visually approaching the patron

Once the patron’s needs have been determined through
the gesture recognition (and the robot has picked up
a soda can, if necessary,) the robot must approach the
patron in order to serve him. The patron’s location is
determined by converting the screen coordinates of the
person OR’s feet marker into floor coordinates using
knowledge of the position and orientation of the robot’s
camera.

The person OR’s feet marker tracks the feet by find-
ing the lowest pixel in a segmentation of the person.
This segmentation is usually computed by combining
the segmentations of the floor, lights, and background
with the color histogram backprojection of the per-
son’s body. When the robot is in motion, however, the
background representation ceases to function because
the background is no longer stable(Kahn et al. 1996)
from the robot’s perspective. Consequently, only the
color backprojection is used for segmentation while the
robot is in motion.

5.2.1 Color histogram backprojection

The visual tracking of the patron by color makes use of
the technique of color histogram backprojection (Swain
& Ballard 1991). In this technique, each possible color
value (in a given color space) has a corresponding bin
in the histogram. The value of each bin represents the
number of pixels in a segmented image that have that
color value.

Color histogram backprojection requires two color
histograms: one for the object being searched for and
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one for the background. For each pixel in the image
to be backprojected, the bin values for that pixel’s
value are retrieved from the object and background
histograms. The corresponding pixel in the backpro-
jection image is then set to the normalized ratio of
the object value to the background value. This tech-
nique causes color values unique to either the object
or background to take extreme values and color values
common to both to take moderate values and allows for
accurate segmentation of objects in many situations.
The color histogram of the patron is acquired using
Perseus to get a segmentation of the patron and then
computing the color histogram of the segmented re-
gion. We use an 8-bit HSV color space that is biased
heavily towards hue. Due to the relative lack of at-
tention to saturation and value (intensity), the patron
can be tracked across dramatic changes in lighting.

5.2.2 Visually tracking the patron’s feet

To locate the patron’s feet in a color image, given color
histograms for the patron and the background, we first
approximate the centroid of the patron by computing a
backprojected image of the patron, blurring it using a
large kernel and finding the peak value in the resulting
image. Then, we look for the lowest row with sufficient
histogram response in the region defined by a rectangle
extending from the peak down to the bottom of the
image and wide enough to be certain to contain at
least one of the patron’s feet. (This is how we find
the lowest row in the image that contains part of the
patron.) Finally, the x-coordinate of the peak and the
y-coordinate of the lowest row are used to define the
location of the patron’s feet.

5.2.3 Approaching the patron

The image coordinates of the patron’s feet, combined
with a known position of the camera, can be used
to compute the floor coordinates of the patron’s feet.
These floor coordinates are used as the goal for the
robot’s navigation system and the robot adjusts its
pan-tilt head so that the floor coordinates are centered
in the camera’s field of view. Actually approaching the
patron then becomes a cycle of locating the patron’s
feet, updating the current navigation goal and redirect-
ing the cameras. This cycle is accomplished through
the interaction of three skills:

track-feet This skill communicates with the Perseus
system, taking the latest screen coordinates of the
patron’s feet, converting the screen coordinates
into world coordinates, and setting the target-x
and target-y channels of the CRL system to
these values.

pan-to-target This skill reads the target channels
and positions the pan-tilt head such that the tar-
get is centered in the lower half of the camera’s
field of view (given the robot’s current position.)

move-and-avoid This skill drives the robot towards
the target while using its sonars to detect and
avoid obstacles along the way. When the robot
gets sufficiently close to the target, it sends a mes-
sage to the RAP system indicating that it has
reached the target.

The RAP system enables all three skills in par-
allel and then waits for the move-and-avoid skill
to send a message back. The pan-to-target and
move-and-avoid skills work independently of what is
being tracked. In fact, these skills are also used in
other tasks such as visually approaching a pop can to
be picked up.

6 Exchanging objects with the
patron

Having our robot physically interact with people has
proven to be quite tricky: it does not have the compli-
cated sensing ability of a human and its hand and arm
have limited degrees of freedom and move very slowly.
As a result, we rely on the cooperation of the patron
to facilitate the exchange. When the robot offers an
object, the patron must remove it from the robot’s ex-
tended arm, and when the robot accepts an object,
the patron must hold the object in the robot’s gripper
until it is securely held in the robot’s grasp. Despite
the fact that the robot does not handle exchanges in
quite the same way as people do, people seem to have
no problems performing the exchanges with the robot
and interpret the interaction as being natural.

6.1 Orienting to the patron

Before performing an exchange with the patron, the
robot must orient itself to him. RAP memory holds in-
formation about where the patron is standing (asserted
after the patron has been approached) and which hand
he gestured with (asserted when the patron makes his
gesture.) To orient with the patron, the RAP system
uses the information it has stored to estimate the lo-
cation of the patron’s hand and then enables a skill to
rotate the robot to face that location.

6.2 Offering an object to the patron

To offer an object to the patron, the robot extends its
arm upward and outward to its highest position and
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Figure 3: The robot offering a can to a patron.

tells the patron to take the object out of its hand.
Then, a skill is enabled that monitors whether there is
anything in the robot’s gripper: the robot can detect
when an infrared beam running between the fingers of
the gripper has been broken. When the skill detects
that the beam is no longer broken, it signals the RAP
system that the gripper is no longer holding anything.
This is the same skill that is used to make sure that the
robot does not drop objects while it is carrying them
from place to place.

While this skill is running, the RAP system keeps
track of how long it is waiting for the patron to take the
object. If the patron delays, the robot will complain
and if he waits too long the robot will give up: the
grasping skill will be disabled, the arm lowered, and the
robot will deposit the can in the nearest recycling bin.
Figure 3 shows the robot offering a can to a patron.

6.3 Accepting an object from the pa-
tron

To accept an object from the patron, the robot extends
its arm as before, opens its gripper, and tells the pa-
tron to place the object in its gripper. Then, a skill is
enabled that waits for the beam in the gripper to be
broken (indicating that something is in the gripper),
closes the gripper, and sends the RAP system a signal
indicating that the robot has grasped an object. This
is the same skill that is used to pick up small objects
from the floor (to pick up a small object, we have the
robot visually orient to the object, roll forward until
the beam in the gripper is broken, and then stop and
grasp the can.) If the patron takes too long, the robot
will give up and return to its initial location.

7 Related work

The work of Kortenkamp et al (Kortenkamp, Huber, &
Bonasso 1996) shows a number of similarities in their
approach to designing a system for human-robot in-
teraction, in part because their system is based upon
some of the technologies developed for the Animate
Agent Project, such as the RAP system and the three-
level control system that underlies the Animate Agent
architecture (Bonasso et al. To appear 1996).

8 Future work

There are two areas of related work that will directly
extend the work described in this paper. One is work
on situated natural language interpretation, which in-
terprets utterances in relation to the context provided
by the perceptual systems and RAP memory. The
other is Gargoyle, an environment we are developing
for situated real-time computer vision (Prokopowicz
et al. 1996). Gargoyle will permit the RAP system to
assemble real-time visual routines on-the-fly. Its multi-
threaded interpreter is cross-platform, and is designed
to run over the Teleos AVP-100 system for computing
correspondence for stereo and motion. It will permit
us to port Perseus to an on-board multi-processor.

9 Conclusion

This paper describes research that extended previous
work using the Perseus visual architecture and the An-
imate Agent architecture, enabling our mobile robot to
accomplish a new task, that of serving as a robot waiter
in a simple restaurant environment. The strengths of
both of these architectures was demonstrated as a great
deal of the original functionality was able to be used
in new ways and a minimal amount of additional pro-
gramming proved necessary. It is our hope, and ex-
pectation, that future tasks can be implemented with
similar ease, utilizing the tools we have already devel-
oped.
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