The Implementation of Cashmere!

Robert J. Stets, DeQing Chen, Sandhya Dwarkadas, Nikolaos Hardavellas,
Galen C. Hunt, Leonidas Kontothanassis, Grigorios Magklis
Srinivasan Parthasarathy, Umit Rencuzogullari, Michael L. Scott

WWW. CS. rochest er. edu/ resear ch/ cashnere
cashnere@s. rochest er. edu

Department of Computer Science
University of Rochester
Rochester, NY 14627-0226

IThis work was supported in part by NSF grants CDA-9401142, CCR-9702466, and CCR-9705594; and an
external research grant from Compag.

Abstract

Cashmere is a software distributed shared memory (SDSM) system designed for today’s high per-
formance cluster architectures. These clusters typically consist of symmetric multiprocessors (SMPs)
connected by a low-latency system area network. Cashmere introduces several novel techniques for del-
egating intra-node sharing to the hardware coherence mechanism available within the SMPs, and also
for leveraging advanced network features such as remote memory access. The efficacy of the Cashmere
design has been borne out through head-to-head comparisons with other well-known, mature SDSMs
and with Cashmere variants that do not take advantage of the various hardware features.

In this paper, we describe the implementation of the Cashmere SDSM. Our discussion is organized
around the core components that comprise Cashmere. We discuss both component interactions and low-
level implementation details. We hope this paper provides researchers with the background needed to
modify and extend the Cashmere system.

Contents

Introduction
Background

Protocol Component

3.1 PageFaults
3.2 Protocol Acquires
3.3 Protocol Releases

Services Component

4.1 PageDirectory
42 Twins
4.3 Write Notices
4.4 Memory Allocation

Message Component

5.1 Messagesand Handlers

5.2 Round-Trip Message Implementation

5.3 Adding a New Message Type

Synchronization Component

6.1 Cluster-wide Synchronization
6.2 Node-level Synchronization

Miscellaneous Component
Software Engineering Issues
Debugging Techniques
Known Bugs

Cache Coherence Protocol Environment

B.1 CCP Code Macros
B.2 CCP Makefile Macros.
B.3 Cashmere-CCP Build Process

o 0o U1 M~

(o]

26

26

26

31

1 Introduction

Cashmere is a software distributed shared memory (SDSM) system designed for a cluster of symmetric
multiprocessors (SMPs) connected by a low-latency system area network. In this paper, we describe
the architecture and implementation of the Cashmere prototype. Figure 1 shows the conceptual organi-
zation of the system. The root Cashmere component is responsible for program startup and exit. The
Protocol! component is a policy module that implements the Cashmere shared memory coherence pro-
tocol. The Synchronization, Messaging, and Services components provide the mechanisms to support
the Protocol component. The Miscellaneous component contains general utility routines that support
all components.

s N
Cashmere
_csm_protocol
Protocol
e N
_csm_services _CSm_message _csm_synch
Services Messaging Synchronization
N J
d M
_csm_misc
Miscellaneous
- %
\ %

Figure 1: Cashmere organization.

The Cashmere prototype has been implemented on a cluster of Compaq AlphaServer SMPs con-
nected by a Compag Memory Channel network [3, 4]. The prototype is designed to leverage the
hardware coherence available within SMPs and also the special network features that may lower com-
munication overhead. In this paper, we will discuss the implementation of two Cashmere versions that
are designed to isolate the impact of the special network features. The “Memory Channel” version
of Cashmere leverages all of the special network features, while the “Explicit Messages” version re-
lies only on low-latency messaging. As shall become clear, the difference between the two Cashmere
versions is largely confined to well-defined operations that access the network.

In the next section we will provide a general overview of the Cashmere protocol operation. The
following sections will then describe the Protocol, Services, Messaging, Synchronization, and Miscel-
laneous components in more detail. Additionally, Section 8 discusses a few of the software engineering

LIn this paper, we will refer interchangeably to components by their prose name and their implementation class name.

2

measures followed during development, and Section 9 discusses several Cashmere debugging tech-
niques.

This doument also contains two appendices. Appendix A discusses known bugs in the system, and
Appendix B details the Cache Coherence Protocol (CCP) application build environment. This build
environment provides a high-level macro language that can be mapped to a number of shared memory
systems.

2 Background

Before studying the details of this paper, the reader is strongly encouraged to read two earlier Cashmere
papers [8, 7]. These papers provide good overviews of the Cashmere protocol and provide details of
its implementation. A good understanding of the Cashmere protocol and also of the Memory Channel
network [3, 4] are essential in understanding the implementation details. In the rest of this Section, we
will briefly introduce terms and concepts that the reader must understand before proceeding.

Memory Channel Cashmere attempts to leverage the special network features of the Memory Chan-
nel network. The Memory Channel employs a memory-mapped, programmed 1/O interface, and pro-
vides remote write capability, inexpensive broadcast, and totally ordered message delivery. The remote
write capability allows a processor to modify memory on a remote node, without requiring assistance
from a processor on that node. The inexpensive broadcast mechanism combines with the remote write
capability to provide very efficient message propagation. Total ordering guarantees that all nodes will
observe broadcast messages in the same order: the order that the messages reach the network.

Cashmere The Cashmere SDSM supports a “moderately lazy” version of release consistency. This
consistency model requires processors to synchronize in order to see each other’s data modifications.
From an implementation point of view, it allows Cashmere to postpone most data propagation until
synchronization points. Cashmere provides several synchronization operations, all of which are built
from Acquire and Release primitives. The former signals the intention to access a set of shared memory
locations, while the latter signals that the accesses are complete. Cashmere requires that an application
program contain “enough” synchronization to eliminate all data races. This synchronization must be
visible to Cashmere.

To manage data sharing, Cashmere splits shared memory into page-sized coherence blocks, and uses
the virtual memory subsystem to detect accesses to these blocks. Each page of shared memory has a
single distinguished home node and an entry in a global (replicated) page directory. The home node
maintains a master copy of the page, while the directory entry maintains information about the page’s
sharing state and home node location. Each page may exist in either Invalid, Read, or Read-Write state
on a particular node.

An access to an Invalid page will result in a page fault that is vectored to the Cashmere library.
Cashmere will obtain an up-to-date copy of the page from the home node via a page update? request.

21n this paper and the Cashmere code itself, a page update is also referred to as a “page fetch” operation.

If the fault was due to a read access, Cashmere will upgrade the page’s sharing state for the node and
its virtual memory permissions to Read, and then return control to the application.

In the event of fault due to a write access, Cashmere may move the page into Exclusive® mode if the
node is the only sharer of the page. Exclusive pages are ignored by the protocol until another sharer
for the page emerges. If there is more that one node sharing the page, Cashmere will make a pristine
copy, called a twin, of the page and place the page ID into the processor’s dirty list. These two steps
will allow modifications to the page to be recovered later. After these steps, the Cashmere handler
will upgrade sharing state for the node and VM permissions to Read-Write and return control to the
application.

During a Release operation, Cashmere will traverse the processor’s dirty list and compare the work-
ing copy of each modified page to its twin. This operation will uncover the page’s modified data, which
is collectively called a diff. (In the rest of this paper, we refer to the entire operation as a “diff”.) The
diff is then sent to the home node for incorporation in the master copy. After the diff, Cashmere will
send write notices to all sharers of the page. At each Acquire operation, processors will invalidate all
pages named by the accumulated write notices.

The twin/diff operations are not necessary on the home node, because processors on the home work
directly on the master copy of the page. To reduce twin/diff overhead, some Cashmere variants (and in
particular both versions described in this report) migrate the page’s home node to active writers.

In the next Section, we will provide a more detailed explanation of the Cashmere Protocol compo-
nent. The following sections will then discuss the components that support the Protocol.

3 Protocol Component

The organization of the Protocol component is pictured in Figure 2. The component consists of a set
of support routines and then four aggregated classes. The prot_acquire and prot_release classes
perform the appropriate protocol operations for the Acquire and Release synchronization primitives.
The _prot_fault class implements Cashmere page fault handling. The _prot_handlers class provides
a set of handlers for protocol-related messages.

To manage its actions, the Protocol component maintains an area of metadata on each node. Some
of this metadata is private to each processor, but most of the metadata is shared by processors within
the node. The _.csm_node_meta_t type in prot_internal .h describes a structure containing:

the node’s twins

node-level write notices

node-level page directory

node-level dirty list (also referred to as the No-Longer-Exclusive list)

per-page timestamps indicating the last Update and Flush (Diff) operations and the last time a
Write Notice was received

3The Cashmere code also refers to this as Sole-Write-Sharer mode.

4

p
_csm_protocol
Protocol
/ R
_prot_acquire _prot_release
Acquire Release
N /
e R
_prot_fault _prot_handlers
Fault handlers Message handlers
N J
N /

Figure 2: Protocol component structure.

o timestamp of the last Release operation on the node

e a Stale vector kept for each page homed on this node, indicating which remote nodes have stale
copies of the page

The node-level dirty list contains pages that have left Exclusive mode. In addition to the node-level
dirty list, each processor also maintains a private dirty list containing pages that have been modified.
The two lists are maintained separately in order to allow the common case, modifications to the per-
processor dirty list, to proceed without synchronization.

The timestamps are based on a logical clock local to the node. These timestamps are used to de-
termine when two protocol operations can safely be coalesced. The Stale vector is used by the home
migration mechanism to ensure that the new home node is up-to-date after migration.

In the following sections, we will discuss the main protocol entry points and the corresponding
implementation of the Cashmere Protocol component.

3.1 Page Faults

All page faults are vectored into the Cashmere _csm_segv_handler handler. This handler first verifies
that the data address belongs to the Cashmere shared data range. Control is then passed to either the
_prot_fault: :ReadPageFault or _prot_fault: :WritePageFault handler, depending on the type of
the faulting access.

Both of these handlers begin by acquiring the local node lock for the affected page. This node lock is
managed by the Page Directory service and is described in Section 4.1. The lock acquire blocks other
local processors from performing protocol operations on the page and is necessary to serialize page
update and diff operations on the page. Both handlers then update the sharing set entry and transfer
control to the _prot_fault: :FetchPage routine.

(O]
o
5_5 On home
< node? no
S ;
-
(D)
L
\
yes

g ly share
g and write Is Fetch No
s ccess? Needed?
=
o
© Yes Yes
L v v
Enter Fetch page,
. make twin if Write
Exclusive necessary access?
mode Per f or nfFet ch

Send migration
request, make
twin if

Make twin N

necessary

Figure 3: Flow chart of _prot_fault: :FetchPage() and _prot_fault: :FetchHomeNode().

Figure 3 shows the control flow through FetchPage. If this node is the home for the page then the
fetch process is relatively simple. In prot_fault: :FetchHomeNode, the protocol simply checks the
current sharing status and enters Exclusive mode if this node is both writing the page and the only
sharer. The page will leave Exclusive mode when another node enters the sharing set and sends a page
update request to the home node. (As part of the transition out of Exclusive mode, the page will be
added to the node-level dirty list of all writers at the home node. This addition will ensure that the
writers eventually expose their modifications to the cluster.)

If this node is not the home, then the fetch process is more complicated. The protocol must ensure
that the node has an up-to-date copy of the page before returning control to the application. It first
checks to see if a fetch is needed. An up-to-date copy of the page may already have been obtained by
another processor within the node. The protocol simply compares the last Update and last Write Notice
timestamps. If the last Write Notice timestamp dominates then a fetch is required and control transfers
to the _prot_fault: :PerformFetch routine. This routine will send a page update request to the home
node and copy the page update embedded in the reply into the working copy of the page.

The PerformFetch routine must apply care when updating the working copy of the page. If there
are concurrent local writers to the page, the routine cannot blindly copy the page update to the work-
ing copy. This blind copy operation could overwrite concurrent modifications. Instead, the protocol
compares the new page data to the twin, which isolates the modifications made by other nodes. These
modifications can then by copied into the working copy of the page without risk of overwriting local
modifications. This routine will also create a twin if the fault is due to a write access.

Returning to Figure 3, if a page fetch is not necessary, then the protocol will check to see if the
fault is due to a write access. If so, the protocol will either send a migration request or simply make
a twin. The migration request is sent if the home node is not currently writing the page. The home
node’s sharing status is visible in the Page Directory. (In the Explicit Messages version of Cashmere,
the home node sharing status is visible on remote nodes, however the the status may be stale and can
only be considered as hint.)

A migration request is sent directly to the home node. A successful request results in a small window
of time during which the home node is logically migrating between the nodes. During this window,
page update requests cannot be serviced; the update requests must instead be buffered. (As described
in Section 5, the Message component provides a utility for buffering messages.) Before sending a
migration request, Cashmere will set a flag indicating that a migration request is pending by calling
_csm_protocol : :SetPendingMigr. The _prot_handlers: :PageReqHandler handler will buffer all
page update requests that arrive while a migration is pending for the requested page.

The home node grants a migration request if it is not actively writing the page. The
_prot_handlers: :MigrRegHandler handler is triggered by the migration request. If the request is
to be granted, the handler will first set the new home PID indication on its node. (This step begins
the logical migration, opening the window of vulnerability described above.) Then, the handler will
formulate an acknowledgement message with a success indication and also possibly the latest copy of
the page. The latest copy of the page is necessary if the Stale vector indicates the new home node does
not have an up-to-date page copy.

Upon receipt of the acknowledgement message in the MigrReplyHandler, the requestor will update
its node home PID indication, if the migration was successful, and also copy any page update to the

working copy. If the migration request was not successful, the requestor will create a twin.

After completion of FetchPage, control will return to the appropriate page fault routine
(ReadPageFault or WritePageFault). The ReadPageFault routine will release the node lock, change
the VM permissions to Read-only and then return control to the application.

The completion of WritePageFault requires a few more steps. First, the processor will release the
associated node lock. Then, the processor will flush the message store in order to process any messages
that may have been buffered during the fault handler’s migration attempt. Then the processor will add
the page ID to its local dirty list. Finally, the processor can upgrade VM permissions to Read/Write
and return control to the application.

3.2 Protocol Acquires

Protocol acquires are relatively simple operations. During an acquire, Cashmere will invalidate all
pages listed by the accumulated write notices. Before the invalidation can occur however, the write
notice structure must be specially processed.

As will be described in Section 4.3, write notices are stored in a two-level structure consisting of
a global, per-node level and a local, per-processor level. To begin an Acquire, Cashmere will first
distribute write notices from the global write notice list to the local write notice lists. (This step is not
necessary in the explicit messages version of Cashmere where distribution occurs when the message is
received.) Then, the processor will invalidate all pages listed in its local write notice list.

The invalidation process is straightforward except in the case where the target page is dirty (i.e. mod-
ified) locally. In this case, the protocol will flush the modifications to the home node before invalidating
the page.

3.3 Protocol Releases

In response to a Release operation, Cashmere will expose all local modifications to the entire cluster.
Beginning in prot_release: :Release, Cashmere will first distribute any pages in the node-level dirty
list to the local dirty list. Then, the protocol can traverse the local dirty list and expose all modifications.

At the home node, all processors work directly on the master copy. Therefore, all modifications are
already in the home node copy, so a processor must only send out write notices to expose the changes.
The write notices are sent to all nodes sharing the modified page.

At a remote node, the modifications must be sent to the home for incorporation into the master copy.
The modifications are sent to the home through a diff operation.* If there are local concurrent writers,
the protocol will also update the twin to reflect the current state of the working page. This update
will eliminate the possibility of sending the same modifications twice. If there are no local concurrent
writers, the protocol will release the twin, freeing it for use in some subsequent write fault on another
page (see Section 4.2).

4The modifications can be pushed to the network either by using the Memory Channel’s programmed 1/0O interface or
by copying them into a contiguous local buffer, which is then streamed to the network. The former is faster, while the latter
(poorly) emulates a DMA-based interface. This choice is controlled by the _.CSM_DIFF_P10 macroin csm_internal .h.

Cashmere leverages the hardware shared memory inside the SMPs to reduce the number of diff
operations. First, if a page has multiple writers within the node and the Release operation is part of a
barrier, the diff will be performed only by the last writer to enter the barrier. Second, before performing
a diff, Cashmere always compares the last Release and the page’s last Flush timestamps. If the Flush
timestamp dominates, another node is either currently flushing or has already flushed the necessary
modifications. In this case, Cashmere must wait for the other processor to complete the flush and then
it can send the necessary write notices. Cashmere can determine when the flush operations are complete
by checking the diff bit in the page’s Directory entry (see Section 4.1).

After the diff operation is complete, the processor can send out the necessary write notices and
downgrade the page sharing and VM permissions to Read. This downgrade will allow future write
accesses to be trapped.

Ordering between Diffs and Write Notices Cashmere requires that the diff operation is complete
before any write notices can be sent and processed. The Memory Channel version of Cashmere relies on
the Memory Channel’s total ordering guarantee. Cashmere can establish ordering between the protocol
events simply by sending the diff before sending the write notices.

The Explicit Message version of Cashmere does not leverage the network total ordering, and so
diffs must be acknowledged before the write notices can be sent. To reduce the acknowledgement
latency, Cashmere pipelines diff operations to different processors. The code in Release basically
cycles through the dirty list and sends out the diffs. If the diff cannot be sent out because the appropriate
message channel is busy, the page is placed back in the dirty list to be re-tried later.

The code keeps track of the number of outstanding diff messages and stalls the Release operation
until all diff operations are complete.

4 Services Component

The Services component provides many of the basic mechanisms to support the Protocol component.
Figure 4 shows the structure of the Services component. In this Section, we will discuss the core classes
that compose the Services component. The Page Directory component implements the global page
directory. The Twins component provides a mechanism that manages and performs Twin operations.
The Write Notices component enables processors to send write notices throughout the system, and the
Memory Allocation component provides an implementation of malloc. In the following sections, we
discuss the Page Directory, Twins, Write Notices and Memory Allocation components.

4.1 Page Directory

The Page Directory maintains sharing information for each page of shared memory. The Directory has
one entry per page, and is logically split into two levels. The global level maintains sharing information
on a per-node basis, while the node level is private to each node and maintains sharing information
for the local processors. The global level is implemented to allow concurrent write accesses without
requiring locking, while the node level serializes accesses via fast hardware shared memory locks.

.)
_csm_services

Services
a N~
_csm_twin _csm_write_notices_t
Twins Write notices
o AN
a N7
_csm_pagedir_t _csm_malloc
Page directory Memory allocation
\ AN
\ %

Figure 4: Services component structure.

Shared Node 0 Node 1 Node 2
Bits: Description Bits: Description
0-4: Home PID 0-2: Sharing status

5: Exclusive status
6-10: Last Holder
11: Home Node Bound Flag
30: Entry Locked Flag
31: Untouched Flag

Figure 5: Logical structure of the global directory entry.

10

Global Page Directory Entry The logical structure of a global page directory entry is pictured in
Figure 5. The entry consists of a Shared word and then a set of per-node words. As described below,
the separation between the Shared word and the per-node words is necessary to support home node
migration. The Shared word contains the following information:

Home PID Processor ID of the home.
Exclusive Flag Boolean flag indicating if page is in Exclusive mode.

Last Holder The Processor ID that last acquired the page. This item is provided for Carnival [6]
(performance modeling) support.

Home Node Bound Flag Boolean flag indicating if home node is bound and cannot migrate.
Entry Locked Flag Boolean flag indicating if entry is locked.
Untouched Flag Boolean flag indicating if page is still untouched.

The per-node words only contain the node’s sharing status (Invalid, Read, or Read/Write) and a bit
indicating if a Diff operation is in progress.

The global directory entry is structured to allow concurrent write accesses. First, the Shared word is
only updated by the home node, and the other words are only updated by their owners. The entry can
be updated concurrently by this strategy, however, a processor must read each of the per-node words
in order to determine the global sharing set. We have evaluated this strategy against an alternative that
uses cluster-wide Memory Channel-based locks to serialize directory modifications, and found that our
“lock-free” approach provides a performance improvement of up to 8% [8].

The Shared word provides a single location for storing the home PID. A single location is necessary
to provide a consistent directory view in the face of home node migration. It also provides a natural
location for additional information, such as the Exclusive flag.

Node Page Directory Entry The node level of the page directory entry maintains sharing information
for processors within the node. The logical structure is very simple: the entry contains the sharing status
(Invalid, Read, Read/Write) for each of local processors. Instead of picturing the logical structure of
this entry, it is more informative to examine the implementation. Figure 6 shows the type definition.
The state field is split into bit fields that indicate the sharing state for each local processor. The other
fields are used during protocol operation:

pvalidTwin A pointer to the twin, if twin is attached.
bmPendingMigr A bitmask indicating which local processors have a migration operation pending.
NodeLock A local node lock used to provide coarse-grain serialization of protocol activities.

DirLock A local node lock used only in low-level routines that modify the directory, thus allowing
additional concurrency over the NodeLock.

Padding A measure® to eliminate false sharing.

5The padding fields are unused by the protocol, however they can be used to store information during debugging. Several
access functions are included in the Cashmere code.

11

// Note: Paddings are calculated with other members of
// _csm_pagedir_entry_t considered.
typedef struct {

// First cache line (see _csm_pagedir_entry_ t)
csm_64bit_t state; // Page state

csm_64bit t *pValidTwin;
// 1T twin is currently valid, points to twin else NULL

csm_32bit_t bmPendingMigr;
// per-cid bitmask stating whether the processor
// is waiting on a pending migration. This could
// be integrated into the state field.
csm_32bit_t padding2[5];

// Second cache line
csm_lock _t NodelLock; // Locks page inside a node
csm_lock t DirlLock;

csm_64bit_t padding3[5];

} _csm_node_pagedir_entry_t;

Figure 6: Type implementation of the Node Page Directory entry. The csm32bit _t and
csmo64bi t _t types represent 32-bit and 64-bit integers, respectively. The csml ock_t is a 64-bit
word.

12

Directory Modifications The Page Directory is global and replicated on each node. The method used
to propagate modifications depends on the specific Cashmere version. The Memory Channel version of
Cashmere uses the Memory Channel’s inexpensive broadcast mechanism to broadcast changes as they
occur. As described above, the structure of the directory entry allows concurrent write accesses.

The Explicit Messages version of Cashmere, by necessity, avoids any broadcasts. Instead, a master
copy of each entry is maintained at the entry’s home node. Remote nodes simply cache copies of the
directory entry. This Cashmere version must ensure that the master directory entry on the home node
is always kept up-to-date. Also, Cashmere must ensure that up-to-date information is either passed to
remote nodes when needed or that the actions of a remote node can tolerate a stale directory entry.

The three key pieces of information in the directory are the sharing set, the home PID indication,
and the Exclusive flag. In the following paragraphs, we examine how the Explicit Messages version of
Cashmere propagates changes to these pieces of information.

The global sharing set needs to be updated when a new node enters the sharing set via a Read or
Write fault or exits the sharing set via an Invalidation operation. In the former case, the node will
also require a page update from the home node. Cashmere simply piggybacks the sharing set update
onto the page update request, allowing the home node to maintain the master entry. In the latter case
however, there is no existing communication with the home node to leverage. Instead, as part of every
Invalidation operation, Cashmere sends an explicit directory update message to the home node. These
steps allow both the master copy at the home node and the copy at the affected node to be properly
maintained.

Unfortunately, with this strategy, other nodes in the system may not be aware of the changes to the
sharing set. In the Cashmere protocol, a remote node only needs the sharing set during one operation:
the issuing of write notices. Fortuitously, this operation follows a diff operation that communicates
with the home node. The home node can simply piggyback the current sharing state on the diff ac-
knowledgement, allowing the processor to use the up-to-date sharing set information to issue write
notices.

The home PID indication also needs to be updated as the home node is initially assigned (or subse-
quently migrated). We use a lazy techngiue to update this global setting. A processor with a stale home
PID indication will eventually send a request to the incorrect node. This node will forward the request
to the home node indicated in its cached directory entry. This request will be repeatedly forwarded
until it reaches the home node. The home node always piggybacks the latest sharing set and home PID
indication onto its message acknowledgements. The message initiator can then use this information to
update its cached entry.

The _csm_packed_entry_t is provided to pack a full directory entry (home PID, sharing set, bound
flag) into a 64-bit value, and this 64-bit value can be attached to the acknowledgements. It is beneficial
to pack the entry because Memory Channel packets on our platform are limited to 32 bytes.® An
unpacked directory entry will result in an increased number of packets and higher operation latency.

Management of the Exclusive flag is simplified by the Cashmere design, which only allows the home
node to enter Exclusive mode. This design decision was predicated on the base Cashmere version,
which allows home node migration. A page in Exclusive mode has only one sharer and that sharer
has Read/Write access to the page. By definition then, the home node will have migrated to the single

6The packet size is limited by our Alpha 21164 microprocessors, which cannot send larger writes to the PCI bus. [3]

13

writer, and so Exclusive mode can only exist on the home node. When the home node is entering
Exclusive mode, it can simply update the master entry. The remote nodes do not need to be aware of
the transition; if they enter the sharing set, they will send a page update request to the home node, at
which point the home can leave Exclusive mode.

The remaining pieces of information in the directory entry are the Last Holder value, the Home
Node Bound flag, the Entry Locked flag, and the Untouched flag. The Last Holder value is currently
not maintained in the explicit messages version of Cashmere. (Carnival, in fact, has not been updated
to run with any Cashmere versions.) The Home Node Bound flag is propagated lazily on the message
acknowledgements from the home node. The remaining two flags are only accessed during initialization
(which is not timed in our executions) and still use the Memory Channel. Future work should change
these to use explicit messages.

4.2 Twins

The Twins component manages the space reserved for page twins, and also performs basic operations
to manage twins and diffs. The Twin component interface exports two sets of functions to handle the
management and the basic operations. The exported interface and underlying implementation are found
in csm_twins.h and svc_twins.cpp.

The twin space is held in shared memory to allow processors within the node to share the same
twins. Upon allocation, the twins are placed into a list (actually a stack) of free twins. The stack is
stored inside the twins themselves. The _csm_twin: :m_pHead Vvalue points to the first twin in the stack,
and then the first word of each twin in the stack points to the next twin in the stack. When a processor
needs to attach a twin to a page, it simply pops a twin off the top of the free stack. If the stack is
empty, the Twin component automatically allocates additional space. When finished using the twin,
the processor releases the twin, placing it at the top of the free stack. The two relevant functions in the
external interface are AttachTwin and ReleaseTwin.

The interface also exports several functions to perform twinning and diffing of pages. The diffing
functions include variants that handle incoming diffs (see Section 3). Diffing is performed at a 32-bit
granularity, and is limited by the granularity of an atomic LOAD/STORE operation.”

The most complex part of the Twin component implementation is the management of the twin space.
Due to the on-demand allocation of twin space and the sharing of twins between processors, each pro-
cessor must ensure that it has mapped a particular twin before it can be accessed. Inside the Twin
component, all accesses to a twin are preceeded by a _AttachTwinSpace call that ensures proper map-
pings are maintained. Note that this call to AttachTwinSpace is even required when releasing a twin,
because the twin space is used to implement the free list.

4.3 Write Notices

The Write Notices component provides a mechanism to send and store write notices. The component
uses a two-level scheme where write notices are sent from one node to another node, and then later

7Our diffing implementation is based on an XOR operation, but is still limited to a 32-bit granularity due to conflicting
accesses between multiple concurrent writers within the node.

14

distributed to processors within the destination.

The Memory Channel version of Cashmere uses a two-level data structure to implement the write
notice support. The top level is a global structure that allows nodes to exchange write notices. The
structure is defined by _csmwrite_notices_t in csm.wn_h. Each node exports a set of write notice bins
into Memory Channel space. Each bin is owned uniquely by a remote node, and only written by that
node. Each bin also has two associated indices, a Recvldx and a Sendldx. These indices mark the next
pending entry on the receiver and the next open entry for the sender. The two indices enable the bins to
be treated as a wrap-around queue.

To send a write notice in the Memory Channel version of Cashmere, a processor first acquires a node
lock corresponding to the destination bin, and then uses remote write to deposit the desired write notice
in the destination bin. The write notice is written to the entry denoted by the current Sendidx value,
and then Sendldx is incremented. Finally, the sender can release the associated node lock.

Periodically, the receiver will process each bin in the global write notice list. The receiver begins
with the entry denoted by the Recvldx, reads the write notice, sets the entry to null, and then increments
the Recvldx. The write notice is then distributed to node-level write notice lists (defined in csm.wn_h)
corresponding to the processors on the node. This node-level list also contains an associated bitmap
with one entry per page. Each bitmap entry is asserted when a write notice is in the list and pending for
that page. This bitmap allows Cashmere to avoid placing duplicate entries in the list.

Both send1dx and Recvldx are placed in Memory Channel space, and modifications to these indices
are reflected to the network. The sender and receiver always have current notions of these variables and
can detect when the bin is full. In this case, the sender will explicitly request the receiver to empty its
write notices bin. The explicit request is sent as a message via the RemoteDistributewN function.

The Explicit Messages version of Cashmere uses the messaging subsystem to exchange write
notices between nodes, and therefore does not use the global level write notices. The write no-
tices are simply accumulated into a local buffer, and then the caller is required to perform a
_csmwrite notices_t::Flush. This call passes the local buffer filled with write notices to the Mes-
sage component, which then passes the write notices to a processor on the destination node.

The message handler on the destination simply distributes the write notices directly to the affected
node-level write notice lists.

4.4 Memory Allocation

The Memory Allocation component provides memory allocation and deallocation routines. This com-
ponent is only available in the latest version of Cashmere. In our current environment, we perform
frequent comparisons between the latest Cashmere and old legacy versions. For this reason, the new
Memory Allocation component is not enabled; instead, we use an older malloc routine (found in
csm_message/msg_assist.cpp) that is consistent with the mal loc in our legacy versions.

The new Malloc component has been tested, however, and is available for use in programs
that require frequent allocation and deallocation. The component can be enabled by asserting the
_CSM_USE_NEW_MALLOC macro in csm_internal .h.

15

5 Message Component

The Message component implements a point-to-point messaging subsystem. Each processor has a set
of bi-directional links that connect it to all other processors in the system. The link endpoints are
actually buffers in Memory Channel space that are accessed through remote write.

a N

_CSm_message

Messaging
_csm_rtag _msg_store _msg_send_data
Reply Tags Message Buffering Data Payload

CListPool<_csm_dmsg_data_t>
Data Buffer Pool Management
o %

Figure 7: Message component structure.

The component is an aggregate of a set of core routines and a number of support components (see
Figure 7). The core routines perform the message notification, detection, and transfer. The support
is comprised of the Reply Tags, the Message Buffering, the Data Payload, and the Data Buffer Pool
Management components.

The Reply Tags component provides a mechanism to track pending message replies. The Message
Buffering component maintains a queue of buffered messages that could not be handled in the current
Cashmere state. The Data Payload component contains a set of routines to construct the data payloads
of each message, and the Data Buffer Pool Management component maintains a pool of data buffers to
be used in assembling message replies.

The core routines can be found in msg.ops.cpp, and the support classes can be found in
msg_utl.cpp. The msg_assist.cpp file contains routines that serve as helpers for clients accessing
the Message component. These helper routines translate incoming parameters into Message compo-
nent structures and invoke the appropriate messaging interface.

The message subsystem is based on a set of pre-defined messages and their associated message han-
dlers. In the following section, we discuss the message types and the structure of the associated han-
dlers. Section 5.2 then discusses the implementation of a round-trip message and Section 5.3 describes
the steps necessary to add a new message.

16

5.1 Messages and Handlers

The Message component defines a number of message types, each distinguished by a unique Message
ID (MID) (see msg_internal .h). Message types exist for requesting page updates, performing diff
operations, and requesting migration, among other tasks. Messages are categorized into three delivery
classes:

Sync Synchronous message. The Messaging subsystem will send the message and wait for a reply
before returning control to the sender.

ASync Asynchronous message. The subsystem will return control to the sender immediately after
sending the message. The receiver is expected to send a reply, but the sender must periodically
poll for it with _.csm_message: :ReceiveMessages().

Very-ASync Very Asynchronous message. This class is the same as ASync, except that the receiver
will not reply to the message.

All messages have an associated set of handlers, as defined by the _csm_.msg_handler_t structure in
msg_internal .h (see Figure 8).

typedef csm _64bit_t (*_csm_handler_t)(const _csm_message_t *msg,
_csm_message_t *reply,
_csm_msg_post_hook_t *pPostHook);

typedef int (*_csm_post_handler_t)(csm_64bit_t handlerResult,
const _csm_message_t *reply,
_csm_msg_post_hook_t *pPostHook);

typedef int (*_csm_reply handler_t)(const _csm message t *reply,
_csm_msg_reply _hook_t *phkReply);

typedef struct {
csm_64bit_t mid;

_csm_handler_t pre;
_csm_post_handler_t post;
_csm_reply_handler_t reply;

} _csm_msg _handler_t;

Figure 8: Type definitions for the structure used to associate handlers with a message.

17

The “Pre” Handler Incoming messages are initially handled by the Pre handler. This handler is
responsible for reading the message body, performing the appropriate action, and then formulating a
reply if necessary. The handler’s return code instructs the core messaging utility on how to proceed. A
Pre handler has the choice of four actions:

Reply return the formulated reply to the requestor
Store this message cannot be processed currently, so store it in a message buffer for later processing
Forward this message cannot be handled at this processor, so forward it to the specified processor

No-Action No further action is necessary

The “Post” Handler Like the Pre handler, the Post handler is executed at the message destination.
The core messaging utility will act on the Pre handler’s return code (for example, send the reply for-
mulated by the handler) and then invoke the Post handler. This handler is responsible for performing
any necessary cleanup. The handler returns an integer value, however currently the value is ignored by
the core messaging utility.

The “Reply” Handler The Reply handler is called at the message source, whenever the reply is
ultimately received. This handler is necessary to support the pipelining of messages. Pipelining across
messages to multiple processors can be accomplished by using Asynchronous messages. As described
above, the Message component returns control to the caller immediately after sending an Asynchronous
message. The Reply handler provides a call-back mechanism that the Message component can use to
alert the caller that a reply has been returned. After the Message component executes the Reply handler,
it can then clear the reply buffer. The Reply handler thus serves the dual purpose of notifying the caller
when a reply has arrived and notifying the Message component when a reply buffer can be cleared.

The handlers are called directly from the core messaging routines, and so they must adhere to a well
known interface. At times however, the handlers must be passed some type of context. For example, a
Pre handler may need to pass information to the Post handler, or a Reply handler may need to be invoked
with certain contextual information. Cashmere solves this problem by including a hook parameter in
each handler call. There are two types of handler hooks. The _csmmsg_reply_hook_t structure is
passed to the Reply handler. A messaging client is responsible for allocating and destroying it. The
_csm_msg_post_hook_t structure is allocated as a temporary variable by the core messaging routines and
passed from the Pre to the Post handler. The reply hook structure uses a more concise format since its
members are dependent on the type of the hook. The message post hook structure should eventually be
updated to use the same type of structure. The two types are shown in Figure 9.

Example A page update message obtains the latest copy of a page and copies that data into the local
working copy of the page. The Pre handler of this message first ensures that the local processor has
read permission for the page, and then formulates a reply with the appropriate page data. The core
message utility executes the Pre handler, returns the reply, and then calls the associated Post handler.
Based on information stored in the message post hook, the Post handler restores the VM permission for

18

// _csm_msg_post_hook t

// This structure is used to pass information from the pre-hook to
// the post-hook. The pre-hook only needs to fill in the information
// which its corresponding post-hook will need. (Note that most of
// this information is available in the incoming packet, but there
// is no guarantee that the packet will be available at post time.
typedef struct {

csm_64bit_t vaddr; // Virtual address
csm_64bit t pi; // Page index

int pid; // Processor ID
csm_64bit_t MsgMask; // Message mask
csm_64bit_t hook; // Function-defined
csm_64bit t hook2; // Function-defined

} _csm_msg_post _hook t;

// _csm_msg_reply_hook_t

// Reply handlers are called from various places by the messaging

// subsystem. Clients of the messaging subsystem can pass arguments
// to the reply handler through this structure. The structure simply
// contains a type field and a void *. The void * should point to the
// argument structure, as defined by the client.

// ““rhk”” stands for reply hook.

const int _csm rhk null = 0;
const int _csm rhk req page = 1;
const int _csm rhk req_glock = 2;
const int _csm _rhk malloc = 3;
const int _csm rhk diff = 4;
typedef struct {
int type; // one of the above _csm rhk _* consts

void *psArgs; // Points to a structure determined by the type
} _csm_msg_reply_hook t;

// Each type of reply hook has a special rhk type. A simple example:
typedef struct {

csm_64bit t vaddr;

csm_64bit t tsStart; // Timestamp at start of fetch
int bWrite; // 1s this a write access?
csm_64bit_t action; // Action taken by home node

unsigned long start;

} _csm_rhk req_page_t;

Figure 9: Message hook types used to pass context to the handlers.

19

the page, thus allowing the permission operation to overlap the reply handling on the source node. The
Reply handler on the source node simply parses the reply and copies the page data to the local working

copy.

struct _csm _dmsg_header_t

{
csm_v6e4dbit t mid; // Message ID
csm_v64bit_t reqno; // Request number
csm_v64bit t size; // Size of message
csm_vé4int_t iSrcPid; // Source of current msg
// (regs and replies are separate msgs)
csm_v6edbit t bInUse; // True if this link is in-use
csm_v64bit_t options[11];
}:

const int _csm_dmsg data size =
(2 * _csm_page_size) - sizeof(_csm_dmsg_header_t);

typedef struct {
csm_v64bit t data] _csm_dmsg data_size/sizeof(csm_v64bit t)];
} _csm _dmsg _data t;

struct _csm_dmsg_t { // 2 Pages
_csm_dmsg_header_t hdr;
_csm_dmsg_data t data;

}:

Figure 10: Message buffer structure.

5.2 Round-Trip Message Implementation

Message buffers are implemented by the _csm_dmsg_t type illustrated in Figure 10. Each buffer consists
of a header and a data section. The header contains the message ID (MID), the message request number,
the size of the message, and the processor ID of the message source. The binuse flag is asserted if
the link is currently in use. The options field is used only during initialization. The following text
describes the implementation of a round-trip message.

To begin, the sender will call a helper function in msg_assist.cpp. The helper function will pack-
age the intended message data into a Message component structure and call the appropriate SendMes-
sage wrapper function (MessageToProcessor, AsyncMessageToProcessor, VeryAsyncMessageTo-
Processor).®

8The MessageToProtocol function is a holdover from earlier, protocol processor versions of Cashmere. In these
versions, this helper function mapped the desired processor ID to the appropriate protocol processor ID. Without protocol
processors, the mapping is an identity function.

20

In SendVessage, the core messaging utility will first create an rtag to mark the pending message
reply. Then the messaging utility will copy the message header and data to the request channel’s
Transmit region. Different methods are used to copy data (i.e. 64-bit copy, 32-bit copy, or a diff
operation) depending on the MID. The different copy routines are contained in the msg_send_data
class. In the final step of sending a message, the messaging utility will assert the recipient’s polling flag
by writing to the associated Transmit region.

The process of receiving a message begins when an application’s polling instrumentation detects an
asserted polling flag. The instrumentation transfers control to the ReceiveMessages function. This
function examines all the incoming request and reply channels and begins processing a message (or
reply). The first step in processing is to compare the MID against the current message mask. Any
MIDs that are currently masked are moved from the message buffer to a message store managed by the
_msg_store class. The message must be removed from the buffer in order to avoid possible deadlock
(especially in Cashmere versions that may require forwarding). When the mask is reset, the caller is
responsible for explicitly flushing the message store via a call to FlushMsgStore.

If the message is not masked then the core messaging utilities will process the message via the
appropriate Pre and Post handlers. This step of processing depends on the MID, the message type, and
the installed handlers (see _csm_message: :HandleMessage()).

Both requests and replies are processed through ReceiveMessages, although requests are handled
through Hand leMessage and replies are handled through ReceiveReply. A messaging client is respon-
sible for calling RecieveMessages so that the incoming request or reply can be handled or stored. Once
the message is removed from the buffer, either because processing is finished or because the message
is stored, the channel’s binuse flag will be reset. The sender can then push another message through
the channel.

5.3 Adding a New Message Type

There are four steps to adding a new message type:

e Add a new MID into msg_internal .h. The new MID must not share any asserted bits (aside
from the oxofeed prefix) with existing mids.

e Create a helper function that builds the Message component data structures and invokes the ap-
propriate Sendvessage wrapper. This function should be placed in msg_assist.cpp.

e Add the appropriate Pre, Post, and/or Reply handlers to msg_assist.cpp. The necessary handlers
will be determined by the type of message and the necessary processing.

e Register the handlers in the _.csm_daemon_register_handlers function.
The most difficult step is to determine the necessary handlers. Pre handlers are mandatory for all

messages. Post handlers are only necessary when some type of “cleanup” is needed after the reply is
sent. Reply handlers are needed only when the reply has data to be processed.

21

6 Synchronization Component

The _csm_synch component provides for cluster-wide locks, barriers, and flags, and also for per-
node locks and specialized atomic operations. Figure 11 shows the structure of _.csm_synch. The
_synch_flags, _synch_locks, and _synch_barrier classes are responsible for the implementation of
the cluster-wide synchronization operations.

e N
_csm_synch
Synchronization
_synch_barriers _synch_locks _synch_flags
Barriers Locks Flags
_synch_segs
Manage lock/flag
segments
N J

Figure 11: Synchronization component structure.

Cluster-wide synchronization operations are tied directly to the protocol; specifically, the cluster-
wide synchronization operations trigger protocol Acquire and Release operations. Lock Acquire and
Release operations trigger the associated protocol operation. Barriers are implemented as a protocol
Release, followed by global synchronization, and then a protocol Acquire. Waiting on a flag triggers
an Acquires; updating a flag triggers a Releases.

In the following discussion, we focus only on the implementation of the synchronization mech-
anisms, beginning with cluster-wide synchronization and ending with the per-node synchronization
mechanisms.

6.1 Cluster-wide Synchronization

The cluster-wide synchronization operations take advantage of the SMP-based cluster by using a two-
level synchronization process. A processor works at the node level first, using hardware shared memory
mechanisms (see Section 6.2); it then completes its synchronization at the global level.

The global synchronization operations have been developed in two versions: one version leverages
the full remote-write, broadcast, and total ordering features of the Memory Channel; the other version
is built with explicit messages only. The implementation of barriers and flags is very similar in the
two versions. In the case of locks, however, the implementations are very different. We consider the
individual synchronization operations below. We then detail the synch_segs class, which manages the
memory backing of the lock and flag structures.

22

Barriers Barriers are implemented with a single manager that gathers entrance notifications from
each node and then toggles a sense variable when all nodes have arrived at the barrier.

class _csm_global_barrier_t {

public:
csm_v64bit t arrival_flags[csm _max_nid];
csm_v64bit t episode_number;
csm_v64bit t global_sense;

};

class _csm_barrier_t {

public:
csm_64bit_t m_bmArrivalsNode;
csm_v64dbit t m_EntranceCtrl;
csm_v64dbit t m_ExitCtrl;

_csm_global_barrier_t *m_pGlobalBarrier;

3

Figure 12: Type implementation of Cashmere barriers.

The type definitions for a barrier ar shown in Figure 12. Again, the structure follows a two-level
implementation. The _csm_barrier_t is held in shared memory, while the _csm_global barrier_t is
mapped as a broadcast Memory Channel region. The m_bmArrivalsNode and m_EntranceCtrl fields
in _csm_barrier_t track the processors within the node that have entered the barrier. The former field is
a bitmap identifying the particular processors; it is passed into the prot_release: :Release function
so that the code can determine when the last sharer of a page has arrived at the barrier. (During a
barrier, only the last sharer needs to perform a diff.) The latter field counts the local processors that
have arrived at the barrier. By analogy, the m_ExitCtrl field counts the number of processors that have
left the barrier.

The last processor on a node to arrive at the barrier notifies the manager of its node’s arrival. In
_csm_global barrier_t, the manager maintains an array of per-node arrival flags. In the Memory
Channel version of Cashmere, these arrival flags are kept in Memory Channel space, so they can be
updated with remote write. In the explicit messages version, the flags are updated via an explicit
CSM_DMSG_BARRIER_ARRIVAL message.

When all nodes have arrived at the barrier, the master toggles the global_sense field in
_csm_global barrier_t. Again, this field is updated either via remote write or by an explicit
CSM_DMSG_BARRIER_SENSE message, depending on the Cashmere version.

In the explicit messages version, the master sends individual CSM_DMSG BARRIER SENSE messages
to the other nodes. Our prototype platform has eight nodes, so this simple broadcast mechanism is
reasonable. If the number of nodes wee to increase, a tree-based barrier scheme might provide better
performance.

23

Locks The _synch_locks class provides mutual exclusion lock operations. An application may per-
form an Acquire, a conditional Acquire, or a Release operation.

The Memory Channel-based locks take full advantage of the special network features. In the code,
these locks are referred to as ilocks.” The locks are represented by an array with one element per
node, and are mapped on each node into both Receive and Transmit regions. The regions are mapped
for broadcast and loopback.

A process begins by acquiring a local node lock. It then announces its intention to acquire an ilock by
asserting its node’s element the array via a write to the appropriate location in the Transmit region. The
process then waits for the write to loopback to the associated Receive region. When the write appears,
the process scans the array. If no other elements are asserted, then the lock is successfully acquired.
Otherwise, a collision has occurred. In the case of a normal Acquire, the process will reset its entry,
back off, and then try the acquire again. In the case of a conditional Acquire, the operation will fail.
The lock can be released simply by resetting the node’s value in the lock array.

This implementation depends on the Memory Channel. First, it uses remote writes with broadcast to
efficiently propagate the intention to acquire the lock. It also relies on total ordering to that each node
sees the broadcast writes in the same order.

The explicit messages version of locks does not leverage any of these features. This version is
borrowed from TreadMarks [1]. It has been modified only to optimize for the underlying SMP-based
platform. The locks are managed by a single processor that maintains a distributed queue of lock
requestors.

// Queue-lock values for the ““held”” field

const int _csm gl _free = 0;
const int _csm gl _held =1;
const int _csm gl wait = 2;

// _csm_qglock_t: Queue-based locks. Does not rely on bcast or total ordering.
//
typedef struct {

int tail;

int next[csm_max_cid];
volatile int held[csm_max_cid];
int mgr;

csm_lock t INode;

csm_64bit_t padding[2];
} _csm_glock_t;

Figure 13: Definition of queue-based lock type used in Explicit Messages version of Cashmere.

9This name was introduced in the first version of Cashmere, where these locks were the internal locks. In the current
Cashmere version, a more appropriate name may be mc-locks, since the implemen