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Abstract
Coherence misses in shared-memory multiprocessors

account for a substantial fraction of execution time in many
important scientific and commercial workloads. Memory
streaming provides a promising solution to the coherence miss
bottleneck because it improves memory level parallelism and
lookahead while using on-chip resources efficiently.

We observe that the order in which shared data are consumed
by one processor is correlated to the order in which they were
produced by another. We investigate this phenomenon and
demonstrate that it can be exploited to send Store-ORDered
Streams (SORDS) of shared data from producers to consumers,
thereby eliminating coherent read misses. Using a trace-driven
analysis of all user and OS memory references in a cache-coherent
distributed shared-memory multiprocessor, we show that SORDS-
based memory streaming can eliminate between 36% and 100% of
all coherent read misses in scientific workloads and between 23%
and 48% in online transaction processing workloads.

1. Introduction
Long-latency cache-coherent accesses in scalable shared-

memory multiprocessors pose a performance-limiting bottleneck
in important commercial [3,18,31] and scientific [7,28,39] work-
loads. Advances in semiconductor fabrication technology and
innovations in chip design promise to continue increasing both the
number of transistors per die and transistor switching speeds.
These trends suggest that processing speed and on-chip storage
capacity will continue to grow. While processor speeds increase
rapidly, communication latency between chips improves more
slowly, magnifying the performance penalty of coherence misses.
Furthermore, the trend towards larger on-chip cache hierarchies
further exacerbates this shared memory wall, as larger caches
increase the fraction of off-chip memory stalls due to sharing [3].

To alleviate the shared memory bottleneck, future architec-
tures must hide the latency of coherence-induced read misses.
Although out-of-order execution can effectively overlap on-chip
accesses, it cannot hide long-latency coherent read misses because
of limited instruction window size. To eliminate coherence miss
latency completely, coherence transfers must be initiated well
ahead of demand misses by the processor. Furthermore,
approaches that transfer only a single block at a time will not
match the processor’s consumption rate. Instead, techniques
targeting long-latency misses must increase the memory level
parallelism (MLP) [5] as well as the lookahead of off-chip coher-

ence transfers. Memory streaming approaches [15,32,38], which
throttle the data transfer rate to match the consumption rate,
provide a promising solution to the shared memory bottleneck
because they improve MLP and lookahead while using on-chip
resources efficiently.

The primary challenge of memory streaming lies in identi-
fying the sequence of addresses to stream. Although stride-based
prediction allows for easy implementation [15,32], memory access
patterns in many important commercial [4] and scientific [28]
workloads are often highly irregular and not amenable to simple
predictive schemes. Recent research has shown that memory
access patterns, although arbitrarily complex, often repeat over the
course of program execution [4], a phenomenon called temporal
address correlation [38]. Temporal streaming exploits this
phenomenon to locate streams for arbitrarily complex patterns of
shared read accesses within a history of recent read misses [38].
However, a past miss sequence may be a poor indicator of future
accesses when a data structure’s layout is changing. Furthermore,
in some applications, the distance between recurring miss
sequences, and thus temporal streaming storage requirements,
grow with data set size.

In this paper, we propose Store-ORDered Streaming
(SORDS), a new memory streaming technique that addresses
changing data structures and is independent of the distance
between recurring data structure traversals. SORDS exploits the
phenomenon that, in scientific and OLTP workloads, shared
values are consumed in approximately the same order that they
were produced. We call this phenomenon producer-consumer
temporal address correlation. SORDS takes advantage of existing
prediction technology to identify when shared values are produced
[21,34] and which nodes will consume those data [17,20,34].
SORDS employs new hardware mechanisms to record the order
shared values are produced and stream shared data from producers
to consumers just before they are accessed. Unlike temporal
streams, store-ordered streams reflect changes to the data structure
layout made by the recorded stores. Furthermore, store-ordered
streams need only be buffered for the interval between the produc-
tion and consumption of a shared value, which can be far shorter
than the interval between recurring consumption sequences.

By analyzing memory access traces from full-system simula-
tion [12] of cache-coherent distributed shared-memory
multiprocessors running OLTP workloads with IBM DB2 and
scientific applications, we demonstrate:
• Producer-Consumer Temporal Address Correlation: We

show that the order in which shared values are consumed is sim-



ilar to the order in which they were produced. Across the
applications we study, 28%-72% of coherent read misses pre-
cisely follow production order. This fraction increases to 66%-
98% when allowing for slight reorderings within a four block
window.

• Practical SORDS Design: We propose a design for store-
ordered streaming with practical hardware mechanisms. Our
design can eliminate 36%-100% of coherent read misses in
scientific applications and 23%-48% in OLTP workloads.

The rest of this paper is organized as follows. In Section 2,
we introduce store-ordered streaming and justify our approach
from an analysis of the properties of shared data access
sequences. In Section 3, we present our design for a practical
hardware implementation of SORDS. In Section 4, we evaluate
our SORDS design through trace-based simulation. We discuss
related work in Section 5. Finally, we conclude in Section 6.

2. Store-Ordered Streaming
In this paper we propose Store-ORDered Streaming

(SORDS), a design for throttled streaming of data from producers
to consumers to hide memory read latency in a distributed
shared-memory (DSM) multiprocessor. SORDS is based on the
key observation that there is temporal correlation between data
production and subsequent consumption in shared memory: the
order in which shared values are consumed is similar to the order
in which they were produced. By capturing the production order,
SORDS enables throttling of the stream of shared data into small
buffers residing at the consumers just-in-time for consumption,
thereby converting coherent read misses into hits. We call the
similarity of the production and consumption orders producer-
consumer temporal address correlation, or P-C correlation.

2.1. SORDS Overview
A node in a DSM system must obtain exclusive access to a

cache block before writing it. Subsequently, the node continues
to access the block until another node in the system issues a read
to it, which causes a downgrade (exclusive-to-shared transition)
at the writer. The last store to a block prior to downgrade is called
a production. The first read of this newly-produced value by any
node is a consumption by that node. If a consumption requires a
coherence request to obtain the data, it is a consumption miss. In
a baseline DSM system, all consumptions incur consumption
misses. The goal of SORDS is to eliminate those misses.

Designs that forward memory values from one DSM node
to another ahead of CPU requests must include mechanisms to
determine which values to forward, when, and to which nodes.
Figure 1 illustrates an example of how such mechanisms func-
tion in a DSM equipped with SORDS. Existing predictor
technology [34] allows each node to identify which stores consti-
tute productions of a shared cache block, and write the block
back to the directory node (1). SORDS records the sequence of
addresses that arrive at the directory, in production order, in a
large circular buffer called a stream queue (2). When a request
for an address arrives at the directory, SORDS fills the request,
locates the requested cache block in the stream queue, and
forwards several subsequent blocks to the consumer (3). As the

consumer hits on forwarded blocks, it signals the directory to
forward additional blocks (4).

Successful forwarding depends upon a high degree of
producer-consumer temporal address correlation. As long as the
consumer continues to access blocks roughly in “store” (i.e.,
production) order, SORDS can eliminate the read misses. Intu-
itively such P-C correlation does exist (1) in general, for both
data items within and across data structures [4] (e.g., parent and
child nodes in a B-Tree), and (2) in shared memory in particular,
because synchronization primitives guard against concurrent
accesses to a shared data structure. In the remainder of this
section, we show empirically that there is a high degree of P-C
correlation in scientific and OLTP workloads, and justify the
major design decisions of SORDS based on the nature of P-C
correlation.

2.2. Methodology & Benchmarks
We demonstrate P-C correlation and evaluate our proposed

SORDS design across a range of scientific and OLTP applica-
tions. We base our results on analysis of full-system memory
traces of a distributed shared-memory multiprocessor using
FLEXUS [12]. FLEXUS is a simulation framework that uses
modular component-based design and rigorous statistical
sampling to enable the development of complex models and
ensure representative measurement results with fast simulation
turnaround. FLEXUS builds on Virtutech Simics [24], a full
system simulator that allows functional emulation of unmodified
commercial applications and operating systems. The simulation
models all memory accesses that occur in a real system,
including all OS references. We configure Simics to run the
scientific applications on a simulated 16-node distributed shared-
memory multiprocessor running Solaris 8. The processing nodes
implement the SPARC III ISA. We evaluate SORDS with OLTP
workloads on Solaris 8 on SPARC and Red Hat Linux 7.3 on
x86. We study DB2 on two platforms because OS code has a
significant impact on database management system performance.
We simulate a 16-node SPARC system and an 8-node x86 system
(Simics uses a BIOS that supports only up to 8 CPUs for x86).

Table 1 describes the applications and inputs we use in this
study. We select a representative group of pointer-intensive and
array-based scientific applications that are (1) scalable to large
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Figure 1. Eliminating coherent read misses in SORDS.



data sets, and (2) maintain a high sensitivity to memory system
performance when scaled. These include barnes [39], a hierar-
chical N-body simulation; em3d [7], an electromagnetic force
simulation; moldyn [28], a CHARMM-like molecular dynamics
simulation; and ocean [39], current simulation. 

We run DB2 7.2 with the TPC-C workload [23], an on-line
transaction processing workload. We use a highly optimized
toolkit, provided by IBM, to build the TPC-C database and run
the benchmark. This toolkit provides a tuned implementation of
the TPC-C specified queries and ensures that correct indices exist
for optimal transaction execution. Prior to trace collection, we
warm the database until the transaction completion rate reaches
steady state. We analyze traces of at least 5,000 transactions.

2.3. Stream Properties
In this section, we explore the consumption sequence prop-

erties of multiprocessor applications, and identify the streaming
mechanisms required to eliminate consumption misses. To gauge
the full potential of streaming, we study it in the context of
“oracle” knowledge of which stores are productions, and which
nodes will subsequently consume these produced values. We
present practical prediction techniques that approximate these
oracles in Section 3.1.

Just-in-time streaming. Given perfect predictions, the
simplest streaming approach is to forward each shared value
immediately upon production to its precise set of consumers.
Such eager forwarding guarantees that each value arrives at each
consumer as early as possible, thereby minimizing the likelihood
of incurring a miss penalty.

This aggressive approach often performs poorly because a
producer often produces many values before consumers begin
consuming them. For some applications, buffering the produced
values at the consumer may require prohibitively large storage.
Moreover, the storage requirement is highly dependent on the
application’s sharing behavior. Figure 2 plots the fraction of
consumption misses eliminated by aggressive streaming as a
function of available (fully-associative) storage at the consumers.
For em3d, moldyn, and DB2 Solaris, hundreds to thousands of
cache blocks must be buffered to cover a significant fraction of
consumption misses. This result shows that forwarding data into
the conventional cache hierarchy would be counterproductive
because: (1) forwarding into the L1 cache would displace many

useful blocks, significantly reducing overall performance, and
(2) forwarding into lower-level caches or the local DRAM
memory [9] would incur a high (local) cache miss penalty,
reducing the gains from forwarding. Similarly, custom storage
would be too expensive both from an implementation cost and
lookup time perspective. Finally, these results are conservative in
that they assume perfect predictors. In practice, with real predic-
tors, storage requirements may be even higher because of
forwarding of unwanted data.

Aggressive streaming upon production requires too much
storage at the consumer to be successful. Instead, we propose
storing values in main memory upon production, and throttling
the forwarding rate to match the consumption rate. Throttling
will allow data to be streamed successfully into a small (e.g., 32-
entry) buffer. SORDS throttles the rate by forwarding streams in
chunks (i.e., small groups of blocks). When the consumer first
accesses any block in a chunk, it signals SORDS to forward the
next chunk. Thus, at steady state, only two chunks from each
simultaneously live stream need to be stored at the consumer.
The chunk size should be large enough to: (1) capture small reor-
derings between the production and consumption sequence, and
(2) overlap consumptions of one chunk with the forwarding of
the subsequent chunk. We address (1) in the following section
and (2) in Section 4.2.

Producer-consumer temporal address correlation. Our
goal with SORDS is to exploit strong temporal correlation
between the production and consumption sequences to forward
blocks in production order. We quantify P-C correlation by calcu-
lating the distance (in number of productions) on the production
sequence between the productions that create values for two
consecutive consumptions. For example, if the production order
is {A,B,C,D} and the consumption order is {A,B,D,C} then the
production sequence distance between A and B is +1 (i.e., perfect
correlation; B follows A in the production sequence), whereas the
distance between D and C is -1 (i.e., the production of C immedi-
ately precedes the production of D). Larger positive or negative
distances indicate that the consumer has “jumped” from one part
of the production sequence to another. 

We first evaluate the production distances of consumptions
relative to the total order of productions at each producer,
labelled “global” in Figure 3 (left). These results indicate that
production and consumption orders frequently match. An
average of 31% of all consumptions precisely follow global

Scientific benchmarks

barnes 64K particles., 2.0 subdiv. tol., 10.0 fleaves

em3d 400K nodes, 15% remote, degree 2, span 5

moldyn 19652 molecules, max interactions 2560000

ocean 514x514 grid, 9600 sec

OLTP benchmarks

DB2 Solaris 100 warehouses (10 GB), 96 clients,
450 MB buffer pool, 16 CPUs

DB2 Linux 100 warehouses (10 GB), 96 clients,
360 MB buffer pool, 8 CPUs

TABLE 1. Applications and input parameters.
Figure 2. Cumulative fraction of consumptions 

eliminated as a function of storage size.
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production order, indicating that there is significant opportunity
for production-ordered streaming.

It is not unusual for an application to interleave the produc-
tion of shared values for multiple consumers. From the point of
view of each consumer, productions destined for other
consumers pollute the global production sequence, decreasing P-
C correlation. Splitting the global production sequence into “per-
consumer” sequences using perfect knowledge of future
consumers extracts significantly more P-C correlation. Figure 3
(right) depicts the P-C correlation between each consumption
sequence, and its corresponding per-consumer production
sequence. An average of 51% of all consumptions precisely
follow the split per-consumer production orders. 

The figure also indicates that a significant fraction of
consumptions are only slightly out-of-order with respect to the
global and per-consumer production sequences. The table in
Figure 3 sums the fraction of consumptions that follow the per-
consumer production sequence with a production distance of up
to four (i.e., the consumptions are out-of-order with respect to the
production sequence by at most four blocks). By forwarding
blocks in chunks, SORDS can tolerate these small reorderings
and has the potential to cover these consumptions. With a chunk
size of four blocks, SORDS can capture between 66% and 98%
of all consumptions. Larger chunk sizes provide diminishing
improvements.

In practice, SORDS can exploit both global and per-
consumer P-C correlation. In applications where sharing patterns
repeat and the set of consumers for each production can be
predicted (e.g., em3d), SORDS can take advantage of per-
consumer P-C correlation. When future consumers are less
predictable (as in the lock-based applications barnes and DB2),
SORDS can still exploit global P-C correlation. In contrast, eager
forwarding approaches rely solely on accurate consumer-set
prediction and have no recourse when consumer sets are not
predictable, as they have no other mechanism to identify which
nodes should receive forwarded data.

Stream on demand. The graphs in Figure 3 also indicate
that whereas the majority of production distances are small, the
distance distribution is fat-tailed in both directions. The tails of
the distribution arise from cases where the consumer jumps from

one portion of the production sequence to another. Together, the
distributions’ peak at +1 and significant tails indicate that the
production sequence is composed of a number of distinct streams
(i.e., consumption subsequences) that are ordered arbitrarily far
apart from each other; the consumer often jumps between
streams on the production sequence. This result has two impor-
tant implications. First, simple FIFO throttling schemes can not
be effective in streaming data from the production sequence,
because they enforce a strict total order and thus can not support
stream jumps. Second, to identify the start of the stream (i.e.,
stream head), to forward data just-in-time, and to avoid sending
unwanted data, streams should be initiated on demand, with a
miss to a cache block in the production sequence indicating a
new stream head. Thus, to supply each consumer with the appro-
priate segment of the production sequence, SORDS must provide
random access to the stream queue (which contains the produc-
tion sequence).

Figure 4 shows a cumulative breakdown of the fraction of
consumptions belonging to streams of a particular length,
assuming a forwarding chunk size of four. As the graph shows,
most streams are longer than 16 blocks. Although initiating
streams on demand incurs one consumption miss per stream (to
the stream head), SORDS sacrifices less than 1/16 of its potential
coverage to these misses. 
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Figure 4 also shows that some streams are hundreds of
cache blocks long. Prefetching or forwarding approaches that
transfer only a fixed number of blocks per miss [30,33] will
sacrifice a larger fraction of potential coverage than the single
miss per stream that SORDS incurs.

Summary. We showed that: (1) to stream effectively,
forwarding must be throttled, (2) SORDS can throttle forwarding
by exploiting the strong producer-consumer temporal address
correlation, and (3) SORDS must provide random access to the
production sequence to allow for initiating streams on demand.
Based on these observations, we now present a design for
SORDS.

3. A Design for Store-Ordered Streaming
In Section 2, we presented an overview of how SORDS

eliminates coherent read misses and analyzed the phenomenon of
producer-consumer temporal address correlation on which
SORDS relies and its implications for a SORDS design. In this
section, we present our design for a practical hardware imple-
mentation of SORDS.

To support scalable systems, the SORDS functionality must
be distributed across all DSM nodes, much like a distributed
directory scheme. The SORDS hardware at each node records
the production order for shared values and forwards streams of
these values to consumers. SORDS’s operation comprises five
steps:
1. Predict which stores produce shared values and forward 

these values to the directory.
2. Predict the set of consumers for each production.
3. Append the block’s address to the end of stream queues for 

each predicted consumer.
4. Upon a demand miss, locate the missing address in the 

stream queue and forward a chunk starting at this location.
5. Upon a hit in a consumer’s streamed value buffer, notify the 

stream engine to forward the next chunk.
Figure 5 depicts the hardware components that SORDS

adds to a base DSM node. The numbers in the figure indicate
which of the above steps each component participates in. A
DownGrade Predictor (DGP) at each processor approximates the
production oracle discussed in Section 2.3. It predicts the last
store to a cache block prior to a subsequent consumption miss,
self-downgrades the cache block, and writes the produced data
back to main memory (1). A Consumer Set Predictor (CSP)
located in the directory approximates the consumer-set oracle
discussed in Section 2.3. When a self-downgraded block arrives
at main memory, CSP predicts which nodes will request shared
copies of it (2). The operation of DGP and CSP is described in
Section 3.1. 

Once CSP has predicted a set of consumers, the Stream
Engine (SE) records the address of the produced block on one or
more stream queues (3) located in main memory. When a
consumer later requests this block, the SE accesses the stream
queue and begins forwarding the stream from that location (4).
Note that the stream queue contains only a list of addresses—the
data for each block are read from memory as the blocks are
streamed. At the consumer node, forwarded data are stored in a
Streamed Value Buffer (SVB) that is accessed in parallel with the

data cache (5). When a load hits in the SVB, the data are trans-
ferred to the L1 data cache, and, if necessary, a hit notification is
sent to the producer’s SE requesting more data from the stream.
Section 3.2 details the structure and operation of the SE and
SVB.

3.1. Predicting Productions & Consumer Sets
SORDS uses two predictor components to identify when

shared values are produced, and which nodes will subsequently
consume those values. Computer architecture literature contains
extensive studies of hardware mechanisms to make these predic-
tions [17,20,21,34]. The choice of particular predictor designs is
orthogonal to the streaming mechanisms in SORDS. 

We study SORDS with DGP [34] as the production
predictor because it has been shown to be effective in commer-
cial workloads. We evaluate SORDS with two alternative
consumer set predictors: CSP [24], a history-based predictor that
can identify complex sharing patterns; and LastMask, a simple
sharing predictor that predicts the consumer set for a new
production of a block will match the final consumer set of the
previous production of the block. We briefly summarize the oper-
ation of DGP and CSP here, but refer readers to [24] for a
thorough discussion of the implementation, hardware costs, and
design parameter sensitivity of these predictors.

The goal of DGP is to identify productions. DGP associates
the downgrade event for a production with the sequence of store
instructions accessing the block, from the time the block is first
modified until the last store prior to its downgrade. As store
instructions are processed, the DGP hardware encodes the PCs
into a trace for each block present in the cache. A block’s current
trace is entered into a signature table when the block is down-
graded. If the new on-line trace calculated for a block upon a
store is present in the signature table, the DGP triggers a self-
downgrade of the block. Thus, DGP captures program behaviors
that repetitively lead to productions.

The goal of CSP is to predict the consumers of each produc-
tion. The intuition underlying CSP is that the pattern by which
values move between nodes, although arbitrarily complex, is
repetitious. CSP maintains a history of the most recent sharing
pattern for each block in the directory. Each history entry records
the producer and consumers of the last few productions of the
block. CSP associates the set of consumers of a production with
the history that led to the production, and stores this association

Figure 5.  Anatomy of a SORDS-based DSM node.
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in a signature table. Upon a production, CSP uses the current
history for the block to obtain a predicted set of consumers from
the table. Thus, CSP accurately predicts consumers when sharing
patterns repeat.

3.2. Mechanisms for Streaming
The SORDS Stream Engine (SE) is designed to provide the

functionality identified as necessary in Section 2.3 to exploit
both global and per-consumer P-C correlation. This section
details the functionality of the SE.

The SE records the sequence in which DGP-downgraded
blocks arrive at the directory. Potentially thousands of values
may be produced before any are consumed, resulting in large
stream queues. Thus, the data structures pertaining to stream
queues are stored in a private region of DRAM at each node,
with a small cache in the SE used to accelerate accesses [26].

Figure 6 (left) depicts the layout of the SE’s private memory
space. The space is divided into two main structures: a set of
stream queues (the majority of storage), and a block indirection
table. The stream queues are circular queues that store lists of
cache block addresses in production order, while the block indi-
rection table enables lookup of an address across stream queues.
The stream queue storage is divided into separate regions that
each record productions by one node. Within each producer’s
region, there are per-consumer stream queues for each consumer
node, and one additional global queue. In a 16-node system,
there are 17 stream queues within each of the 16 producer
regions.

Figure 6 (center) depicts the operation of the SE when a
DGP-triggered self-downgrade arrives. The SE obtains a CSP
prediction for the produced block. If a consumer set is not
predicted (e.g., because of low confidence or because the sharing
history has never been encountered before), the production
address is appended to the global stream queue. To facilitate fast
stream lookup, the SE also records the index of the stream queue
entry in a stream pointer field stored with the block’s directory
entry. If CSP predicts a consumer set, the production address is
appended to each of the indicated per-consumer stream queues.

To support rapid lookup for all occurrences of the address, the SE
creates a linked list within the block indirection table pointing to
all private stream queue locations of the block. The head of this
linked list records a bit mask indicating which private stream
queues contain the address. The stream pointer in the directory
points to the head of this linked list. The directory overhead of
the stream pointer is log2(max entries on queue) + 1 bits. We
analyze the storage requirement of stream queues in Section 4.3.

Figure 6 (right) depicts the operation of the SE upon receipt
of a read miss at the directory. If the stream pointer for the block
is initialized, the coherence engine passes the requested address,
identity of the requesting node, and the stream pointer to the SE
for processing. The SE uses the stream pointer to quickly deter-
mine which stream queues contain the block. If the block’s
address is present on a stream queue for this consumer, the
stream engine initiates streaming from the indicated stream
queue location. The number of blocks to forward is determined
by the chunk size parameter of the SORDS design (see
Section 4.3).

Each consumer stores streamed blocks in its Streamed Value
Buffer (SVB), a small fully-associative buffer with LRU replace-
ment. The buffer stores block addresses, values, and the stream
context. The stream context is composed of the identity of the
forwarding SE, an identifier for the associated stream queue, and
a stream queue pointer indicating from where forwarding should
continue. The SVB contains only clean data, and SVB entries are
discarded upon a write by any node (including the local node) to
maintain coherence. Upon a hit in the SVB, the streamed block is
transferred to the L1 data cache and a hit notification containing
the stream context is sent to the SE indicating where the stream
should be continued. The advantage of tracking stream context
through the SVB is that the SE does not need to track live
streams—each consumer supplies the necessary state with each
hit notification. Thus, the number of parallel streams is limited
only by storage constraints at the consumer. Upon a hit, other
blocks in the SVB from the same chunk are flagged to avoid
duplicate hit notifications.

Figure 6.  Stream Engine data structures and processing. The left-most figure depicts the data structures the SE stores 
in memory. The center and right-most figure depict the SE processing a production and demand miss, respectively.
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4. Results
We first report the effectiveness of the predictor mecha-

nisms we use to identify productions and predict consumer sets
as input to the SORDS streaming mechanisms. We then analyze
the design parameters of the SORDS streaming hardware.
Finally, we evaluate the effectiveness of our proposed SORDS
hardware at eliminating consumption misses.

4.1. Predictor Results
SORDS depends upon accurate prediction of productions,

and benefits greatly from accurate prediction of the consumer set
for each production. Table 2 presents the coverage and mispre-
diction rate of our production predictor (DGP), and the two
alternative sharing prediction techniques, CSP and LastMask, as
described in Section 3.1. Coverage is the fraction of productions
or consumers correctly identified by a prediction mechanism.
Mispredictions represent over-predictions—stores incorrectly
identified as productions or predicted consumers which do not
read a produced value.

Our DGP results corroborate previously published results
[34] for both scientific and commercial applications. The trace-
based DGP exhibits near-perfect coverage with low discards on
the scientific applications, which are generally repetitive across
program iterations. OLTP workloads exhibit data-dependent
behavior, and therefore productions are less predictable. The
higher rate of DGP mispredictions for OLTP applications will
not degrade performance if a relaxed memory system [1,10] is
employed, because the additional write misses from DGP
mispredictions can be fully overlapped. The high DGP coverage
across applications ensures that there is significant opportunity
for SORDS to eliminate consumption misses, as SORDS cannot
stream producted values that the predictor does not identify.

The history-based CSP sharing predictor equals or outper-
forms simple last mask prediction across applications. For the
scientific applications with stable and highly repetitive sharing
patterns (em3d, moldyn, ocean), CSP predicts nearly all sharers
correctly, with virtually no mispredictions. In the lock-based
applications (barnes, DB2) where sharing patterns change
frequently, CSP predicts conservatively, while last mask often
predicts an incorrect sharing list. CSP’s confidence mechanism
gives it an advantage over last mask for these applications. Accu-
rate CSP predictions, where possible, allow SORDS to exploit
per-consumer P-C correlation for more accurate streaming.

4.2. Chunk Size & Forwarding Lookahead
The primary role of the SORDS chunk size parameter is to

ensure that the consumer node does not stall waiting for
forwarded data while consuming a long stream. SORDS incurs a
full network round-trip latency each time the consumer requests
forwarding of the next stream chunk. When successive consump-
tions are clustered together in bursts, there is insufficient time to
forward each block individually. For SORDS to be effective, we
must select a chunk size that is sufficiently large to supply
enough data to satisfy typical bursts of consumptions. However,
if we choose too large a chunk size, storage at the consumer is
wasted and fewer streams can be followed in parallel. Thus,
selecting a chunk size involves balancing storage requirements at
the consumer and overlapping the round-trip messaging delay of
forwarding during consumption bursts.

We analyze each of our workloads to find the typical bursts
of consumptions that must be overlapped for various forwarding
delays. We measure forwarding delay in instructions executed at
the consumer to remain independent of microarchitecture and
cache configuration. For each forwarding delay, we measure how
many consumptions on average occur within one forwarding
window for all windows containing a burst of more than one
consumption. We consider only consumptions that occur in clus-
tered bursts because consumptions that are further apart than the
forwarding delay can be successfully streamed at any chunk size.

Figure 7 shows the results of our chunk size analysis. The
required chunk size for an application depends on its IPC and the
round-trip network latency. For a 2-hop round-trip network
latency of 500 cycles and an IPC of 0.4 for the OLTP workloads
[2], a round-trip corresponds to 200 instructions. For this design
point, Figure 7 shows that a chunk size of four will fully overlap
the consumption bursts. For a typical scientific benchmark IPC
of 1.4 [8], Figure 7 shows that a chunk size of four to six will
fully overlap the consumption bursts for all scientific applica-
tions except for ocean.

The version of ocean we study (taken from [39]) is an
enhanced version of the original benchmark that uses sub-
blocking to improve the communication to computation ratio.
Sub-blocking has the effect of grouping all the consumptions of a
sub-block into a single burst. This optimization is counterproduc-

DGP CSP LastMask
Cov Misp Cov Misp Cov Misp

barnes 88% 4% 38% 4% 40% 56%
em3d 100% 0% 100% 0% 100% 0%

moldyn 97% 0% 99% 0% 31% 59%
ocean 82% 7% 89% 4% 80% 20%

DB2 Solaris 67% 14% 9% 6% 23% 75%
DB2 Linux 71% 8% 45% 17% 11% 87%

TABLE 2. Production and sharing prediction results.

Figure 7.  Required chunk size as a function of 
stream round-trip fetch time.
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tive with SORDS, because SORDS will ensure a steady stream
of blocks even if consumptions are evenly spaced. However,
even if SORDS cannot fully overlap all consumptions for ocean,
it will still improve performance by reducing the number of
misses to one per chunk.

4.3. SORDS Design Space
We performed an analysis of the storage requirements for

SORDS stream queues, and found that increasing storage beyond
2048 entries per stream queue had little effect on any application.
With fewer entries, coverage drops off rapidly. With 2048
entries, the total storage required at each node for a 16-node
system is roughly 5.5 MB (17 stream queues for each of 16
producers; up to 10 bytes per entry). The 5.5 MB storage require-
ment is large enough to prevent SORDS from using on-chip
SRAM for stream queues, but is a negligible fraction of main
memory.

Section 4.2 investigated the SORDS chunk size and deter-
mined that between four and six blocks are required to overlap
the round-trip latency of forwarding. Chunk size also affects
SORDS coverage. Increasing chunk size with fixed storage at the
consumer reduces the number of streams that can be followed in
parallel, which increases the likelihood of replacing useful but as
yet unconsumed blocks. To avoid this effect, we have found that
sending only a single head block upon creation of a new stream is
effective at reducing the number of replaced blocks, without
sacrificing much coverage. When the head block is consumed,
we forward the remainder of long streams using the chunk size
derived in Section 4.2.

Figure 8 presents SORDS results for a variety of forwarding
chunk designs, demonstrating the effect of this optimization.
These results use CSP as the sharing predictor. “Coverage” is the
fraction of all consumptions that SORDS eliminates. “Training”
are consumptions that SORDS cannot eliminate, and are instead
used to train the prediction mechanisms. “Discards” are blocks
that were forwarded to a consumer but never used—either the
SVB evicted the block or it was invalidated because of a write by
another processor. First, the graph shows that SORDS is very
effective at eliminating nearly all consumptions for the applica-
tions where CSP is highly effective (em3d, moldyn, ocean) and
SORDS can exploit per-consumer P-C correlation. In moldyn,
there is a phase of execution that is characterized by many
parallel, short streams. This phase causes the ~20% gap between
SORDS coverage and moldyn’s perfect CSP coverage. For the

lock-based applications, where CSP is less effective, SORDS
still eliminates 25% to 50% of coherence misses. Second,
Figure 8 shows that our head block optimization is effective at
reducing discards. Only moldyn suffers from the optimization,
again because of its frequent short streams.

Figure 9 evaluates SORDS across sharing predictors. Mask
refers to the last sharing mask prediction technique. For applica-
tions where sharing prediction is effective, SORDS sees
considerable advantage from being able to exploit per-consumer
rather than global P-C correlation. In barnes, where consumers
are generally unpredictable, the high discard rate for the None
category shows that forwarding from the global stream queue
causes many discards. Global P-C correlation is relatively poor
for barnes (see Figure 3). The last mask prediction technique
never places blocks on the global stream queue because it always
predicts a set of consumers. CSP, however, will not predict
sharers if prediction confidence is low. Thus, CSP exhibits a
similar, though smaller, discard effect as seen without a sharing
predictor. In DB2 Linux, coverage without a sharing predictor is
slightly higher than CSP, as non-predicted consumers are able to
find long streams on the global stream queue. However,
removing the sharing predictor doubles the discards.

4.4. Comparison to Alternative Techniques
Figure 10 compares our final SORDS design with two other

techniques for eliminating coherent read misses. Eager shares
DGP and CSP with SORDS, but forwards produced blocks to
predicted consumers immediately upon production. Stride is an
adaptive stride prefetcher that examines memory patterns at the

Figure 8.  SORDS sensitivity to forwarding chunk size. Each forwarding chunk design is listed as x-y. x refers to the size 
of the head chunk sent upon a demand miss, y refers to the body chunk size sent in reply to a hit notification.
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Figure 9.  SORDS with various sharing predictors.
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directory for strided accesses. When a stride is located, the
prefetcher sends the next four blocks along the stride. SORDS
and Eager are each considered for two different SVB sizes (4KB
and 16KB).

SORDS is clearly superior to eager forwarding. Eager
forwards data prematurely, replacing useful data in the
consumer’s small SVB, leading to high discard rates in em3d,
moldyn, and ocean. In cases where CSP makes few predictions,
eager forwarding sends few blocks, resulting in both low
coverage and low discards.

SORDS is also superior to stride-based prefetching, in both
coverage and discards. Stride results in many discards because it
is incapable of throttling. The access patterns in em3d and ocean
are not strided, resulting in much lower coverage for stride.
SORDS provides about 10% more coverage for DB2 Solaris, and
20% more for moldyn. Coverage is similar for barnes. For DB2
Linux and barnes, SORDS coverage is limited by the difficulty of
sharing prediction, which does not limit the stride prefetcher.

SORDS is relatively insensitive to the size of the
consumer’s SVB. Because there are few streams followed in
parallel, and throttling limits occupancy at the buffer, 4KB of
storage is sufficient. Moldyn is the exception, because its many
parallel streams put significant pressure on the SVB during
bursts. Eager forwarding is more sensitive to buffer size, because
the SVB must contain all produced but unconsumed values.

5. Related Work
Prior studies have shown that coherent write miss latency

can be hidden through relaxed consistency models [1], or by
speculatively relaxing ordering constraints under sequential
consistency [10]. Coherence optimizations directly reduce the
latency of coherent read misses through optimizing the coher-
ence protocol for particular access patterns [16,36], predicting
coherence activity and initiating it in advance of explicit requests
[17,20,21,27], or speculatively using incoherent values [13].
Token coherence [25] eases the implementation of these optimi-
zations by splitting coherence protocols into separate
performance and correctness protocols, reducing the protocol

verification burden. However, these proposals either target only
specific sharing patterns (e.g., migratory or false sharing) or hide
only part of the coherence latency (e.g., one hop of a coherence
transaction). Furthermore, none of these proposals increase
coherence MLP.

Prefetching techniques [11,14,22,30,33] can initiate coher-
ence transfers in advance of processor requests, and thus have the
potential to fully eliminate the latency of a coherence miss.
However, many prefetchers limit their maximum effectiveness
by targeting only one miss at a time [11,14,22] or transferring a
fixed number of blocks per miss [30,33]. At the other extreme,
forwarding [19] places no restriction on block transfers, poten-
tially forwarding too many blocks ahead of consumer demand
and increasing pressure on limited on-chip storage. In contrast,
memory streaming approaches throttle the transfer of arbitrary
length access sequences and thereby avoid sacrificing opportu-
nity while using limited on-chip storage efficiently.

Other proposals advocate increasing the effective MLP by
simulating the effects of larger instruction windows through run-
ahead execution [29] or by decoupling the computation and
memory-access slices of program execution [6,35,37]. However,
in contrast to history-based streaming techniques like SORDS,
these approaches do not increase memory-level parallelism when
memory accesses are dependent—for example, when chasing
pointers in linked-data structures, one memory access must
complete before the subsequent access can proceed. Techniques
seeking to exceed the dataflow limit through value prediction or
to increase MLP at the processor (e.g., SMT) or the chip level
(e.g., CMP) are complementary to our work.

6. Conclusion
In this paper, we presented SORDS, a memory streaming

technique for eliminating coherent read misses in distributed
shared-memory systems. We demonstrated the phenomenon of
producer-consumer temporal address correlation—that produc-
tion and consumption orders are highly similar—and showed
how to exploit this to improve performance. We demonstrated
that throttled streaming is essential for eliminating a large frac-
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tion of coherence misses with minimal storage. We introduced a
first design for SORDS comprising: DGP to identify down-
grades; CSP to predict subsequent consumers; and a Stream
Engine to stream data at the rate of consumption. We evaluated
this design and showed that SORDS can eliminate 36%-100% of
coherent read misses in scientific applications and 23%-48% in
OLTP workloads.
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