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ABSTRACT

Intuitively, aggressive work sharing among concurrent queries in a
database system should always improve performance by
eliminating redundant computation or data accesses. We show
that, contrary to common intuition, this is not always the case in
practice, especially in the highly parallel world of chip multi-
processors. As the number of cores in the system increases, a
trade-off appears between exploiting work sharing opportunities
and the available parallelism. To resolve the trade-off, we develop
an analytical approach that predicts the effect of work sharing in
multi-core systems. Database systems can use the model to
determine, statically or at runtime, whether work sharing is
beneficial and apply it only when appropriate.

The contributions of this paper are as follows. First, we introduce
and analyze the effects of the trade-off between work sharing and
parallelism on database systems running complex decision-support
queries. Second, we propose an intuitive and simple model that can
evaluate the trade-off using real-world measurement
approximations of the query execution processes. Furthermore, we
integrate the model into a prototype database execution engine,
and demonstrate that selective work sharing according to the
model outperforms never-share static schemes by 20% on average
and always-share ones by 2.5x.

1. INTRODUCTION

Rather than increasing uniprocessor performance by incorporating
aggressive optimizations into single-core micro-architectures,
modern hardware improves performance through massive
parallelism. Nearly all major hardware vendors already ship chip
multiprocessors (CMPs) containing two to eight cores with support
for up to eight hardware thread contexts per core. In the next
decade we anticipate a computing landscape dominated by multi-
core chips featuring hundreds of execution contexts. While many
database management systems (DBMS) were designed for one- or
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few-processor machines, today’s capacity for highly parallel
execution — even on a single machine — more closely resembles
a parallel database environment.

With the advent of highly parallel processors we expect that a
single machine could host a significant subset of an enterprise’s
data warehousing operations. In such a scenario, significant
opportunities for work sharing arise. A wealth of techniques,
including materialized views [18], cooperative scans [28,14],
multi-query optimization [20], and simultaneous pipelining [11],
have been proposed to exploit work sharing to the maximum; all
are based on the intuitive assumption that reducing the total
amount of work to be done in the system should improve
performance. Surprisingly, however, this is not always the case.

This paper demonstrates that work sharing does not always
improve performance, especially for the highly parallel CMP
architectures looming on the horizon. This counter-intuitive result
arises from an inherent trade-off between work sharing and
parallelism. In addition to eliminating redundant work that would
otherwise have executed concurrently, work sharing tends to partly
serialize execution of shared queries at the point of sharing. If
serialization occurs on the critical path of the queries being
processed, the reduction in parallelism can hurt performance rather
than improving it. In consequence, aggressive work sharing may
not improve database system performance as expected, even for
systems with relatively few cores. As we demonstrate in this
paper, highly parallel environments further accentuate this side-
effect. Finally, work sharing that eliminates redundant 1/O is
especially effective for 1/0-bound workloads [11]; the trend of
ever-growing memory capacities, however, further increases the
importance of understanding the work sharing/parallelism trade-
off as more and more workloads fit in main memory.

In order to achieve maximum performance in highly parallel
systems the database engine must intelligently exploit work
sharing, detecting and avoiding situations where work sharing will
be unhelpful.

1.1 To Share, or not to Share?

Intuitively, work sharing should provide performance benefits
proportional to the amount of work removed from the system.
Unfortunately this is not always the case, especially for in-memory
workloads. Prior efforts to incorporate explicit work sharing into
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Figure 1. Speedup when sharing part of a data warehousing
query (TPC-H query 6) relative to never-share execution.

database systems have encountered unexpected behaviors that
discouraged their use [14,28].

To illustrate the fact that work sharing may not always be
beneficial, we ran the following experiment. A different number of
concurrent clients (from one to 48) submit a simple data
warehousing query that is dominated by a scan on a large, in-
memory table (query 6 from the TPC-H benchmark, see Section 3
for experimental setup details). Different clients use different
predicates, however, all clients share the common task of scanning
the same large table before applying their private predicates. In a
uniprocessor machine, performing the scan only once for all clients
and then applying the predicates for each client separately yields a
throughput increase over a non-sharing execution sequence. The
increase in throughput is due to the system’s ability to eliminate
redundant work (in this case, the individual scanning of the large
table). The topmost line of Figure 1 illustrates the impact of work
sharing in a single-core machine as the number of clients increases
from 1 to 48. If, however, we increase the number of available
cores, then the system is not penalized as much as before for
performing redundant work, since that work can be performed in
parallel. In fact, as Figure 1 shows, for more than one core, work
sharing is harmful for this specific workload.

1.2 An analytical approach to work sharing

In this paper we propose an analytical model that captures the
trade-off between parallelism and work sharing in order to predict
the circumstances under which work sharing is helpful. Based on
these predictions a DBMS can judiciously apply work sharing, at
runtime, to achieve maximum performance.

The model is simple and intuitive. It depends only on the
communication patterns and amount of work performed by each
node of the query plan. The model uses these parameters to
determine the available parallelism and effects of work sharing for
the query. Given processor constraints and a number of concurrent
clients, the model predicts the speedup of sharing portions of the
participating queries vs. executing the queries in parallel.

We assume a closed system where every query that completes is
replaced by a new one, as is typical for a system under heavy load.

A closed system is a suitable model for data warehousing
operations, where data analysts submit long-running queries one
after the other, as soon as they get the results of the previous query.
In a closed system, arrivals—and therefore peak throughput—are
governed by how long it takes to process each query. If X is the
average system throughput, N is the number of queries allowed in
the system at a time, and R is the average rate at which the system
processes a single query, Little’s Law concisely captures this
relationship as

X = NR

Little’s Law has a startling implication for work sharing in closed
systems: throttling queries lowers throughput even if the amount of
work in the system is reduced at the same time. Intuitively, then, an
analytical model of the work sharing parallelism trade-off must be
able to determine whether applying work sharing will lower the
average query processing rate of the system. On the one hand,
work sharing potentially imposes throttling, but on the other hand
it also may remove enough redundant work from the system to free
needed processing resources.

A model that captures the essence of Little’s Law in the context of
work sharing is particularly well-suited to pipelined query
processing because the “bottleneck” pipeline stage determines the
rate of the entire query’s forward progress. For example, [10] uses
this reasoning to apply rate-based models to predict the
performance in data warehousing workloads. In our case, work
sharing may create or accentuate a bottleneck in the queries under
consideration and hurt performance instead of increasing it.

Our model provides insight into the source of the unexpected
performance loss shown in Figure 1. In this extreme example,
work sharing creates a large bottleneck that artificially caps the
degree of parallelism and leaves multi-core systems with idle
contexts. Under work sharing, the system in Figure 1 utilized only
three of 32 available hardware contexts, while independent
execution utilized all of them. The resulting 10x performance
difference demonstrates that the DBMS must be willing to
sacrifice at least a part of the available work sharing opportunity to
provide sufficient parallelism.

Incorporating the model directly into the DBMS allows it to make
intelligent decisions about when to share work. Section 7 shows
how a model-guided work sharing policy outperforms static
“always share” and “never share” policies.

1.3 Contributions and Paper Organization

In order to build database systems that benefit from work sharing
in the upcoming hardware landscape, designers must understand
the underlying relationship between parallelism and work sharing.
To our knowledge this paper is the first that discusses the trade-off
between parallelism and work sharing in database systems. It
provides a simple analytical model that captures the trade-off,
allowing database systems to apply work sharing judiciously, at
runtime. We show that a system must first strive to utilize all
available hardware resources, sacrificing work sharing
opportunities if necessary to provide parallelism. Furthermore, we
demonstrate a prototype database execution engine that
incorporates the model, and show that selective work sharing



according to the model outperforms never-share static schemes by
20% on average and always-share ones by 2.5x.

The rest of the paper is organized as follows: Section 2 discusses
background and related work. Section 3 experimentally shows that
sharing in highly parallel environments is not always beneficial,
while Section 4 presents the analytical model that predicts the
performance of the database system using pipelined parallelism
and work sharing. Section 5 extends the model to include more
classes of queries, including those containing stop-and-go
operators. Section 6 elaborates on the parameters that significantly
affect performance, such as the available processing power and the
overhead of work sharing. Section 7 experimentally validates the
model, while Section 8 experimentally evaluates the model in a
real-world setting and discusses cases where it can be beneficial,
followed by our conclusions in Section 9.

2. BACKGROUND AND RELATED WORK

In this paper we consider read-mostly database workloads on a
DBMS that employs pipeline parallelism and has some means of
exploiting work sharing (such as those discussed over the next
paragraphs). The DBMS runs on a highly parallel chip
multiprocessor system with abundant main memory.

The remainder of this section discusses each feature in more detail
and its implications for the work sharing/parallelism trade-off. In
particular, Section 2.1 presents various proposals for work sharing,
while Section 2.2 discusses pipelined parallelism, and Section 2.3
elaborates on the emerging hardware landscape.

2.1 Work Sharing

We define work sharing as any operation that reduces the total
amount of work in a system by eliminating redundant computation
or data accesses.

By far the most common form of work sharing occurs through the
buffer pool, which stores both scans and intermediate results.
However, buffer pools exploit sharing haphazardly: they do not
provide an obvious way to conscientiously exploit sharing
opportunities or to arrange for them to occur. The following
paragraphs highlight techniques designed to expose and exploit
work sharing opportunities.

Materialized Views: Materialized view selection [18] is typically
applied to workloads known in advance, in order to speed up
queries that contain common sub-expressions. Materialized views
exploit commonality between different queries at the expense of
potentially significant view maintenance costs. Tools for automatic
selection of materialized views take such costs into account when
recommending a set of views to create [1]. The usefulness of
materialized views is limited when the workload is not always
known ahead of time or the workload requirements change
frequently.

Multi-Query Optimization: Multiple-query optimization (MQO)
[20,19] identifies common sub-expressions in query execution
plans during optimization, and produces globally-optimal plans.
The detection of common sub-expressions is done at optimization
time, thus, all queries need to be optimized as a batch. In addition,
to share intermediate results among queries, MQO typically relies

on costly materializations. To avoid unnecessary materializations,
a recent study [6] introduces a model that decides at the
optimization phase which results can be pipelined and which need
to be materialized to ensure continuous progress in the system.

Cooperative/Synchronized Scans: Since queries interact with the
buffer pool manager through a page-level interface, it is difficult to
develop generic policies to coordinate current and future accesses
from different queries to the same disk pages. The need to
efficiently coordinate and share multiple disk scans on the same
table has long been recognized and several commercial DBMSs
and research prototypes incorporate various forms of multi-scan
optimizations [28,5,7,14]. The challenge is to bypass the
restrictions implied by the page-level interface in order to fully
exploit the knowledge of query access patterns, even if it requires
run-time adjustments to the query evaluation strategy.

Simultaneous Pipelining. Staged database systems [9] implement
one or few similar relational operators as independent modules
(“stages”) that operate in parallel while maintaining private data
and control mechanisms. Incoming requests are decomposed into
“packets” and routed to the appropriate stages. The packets
indicate the work requested on behalf of the incoming query, and
form series of producer-consumer pairs. All requests for a
particular operation cluster on the same queue. This enables the
system to detect work sharing opportunities easily at run-time.
Once a sharing opportunity is detected the system executes the
corresponding operation only once and simultaneously pipelines
the results of the common operation to the interested parties [11].

Sharing in Streaming Engines: In the context of stream
management systems there have been proposed techniques to share
work across different queries [15,4]. Although the concept of
sharing is similar, queries in stream systems always process the
most recently received tuples. In traditional query processing there
are specific requirements as to which tuples are needed and in what
order they need to be processed.

Explicit work sharing generally imposes some amount of
overhead, and additionally reduces parallelism by partly serializing
operations that otherwise might have occurred in parallel.

2.2 Parallelism
Database workloads exhibit three main types of parallelism:

« Multiple Requests. Independent requests can execute
simultaneously.

*  Pipelining. Producer-consumer pairs can execute at least
partly in parallel, forming an assembly line of sorts.

e Partitioning. Many queries can be divided into
independent sub-queries whose results are then combined
to answer the original query.

We focus on pipeline parallelism in a system with multiple

outstanding requests; partitioning is an orthogonal concern we

leave to future work.

Pipeline Parallelism. Queries can be divided into producer-
consumer pairs, which can execute in parallel and reduce overall
execution time. This type of parallelism is called pipeline
parallelism [11,12,22].



The majority of performance analysis on pipelined execution has
been conducted in the context of parallel database systems [12,22].
In such environments the major concern is the
communication/parallelism trade-off within a single query. In this
work we focus on the work sharing/parallelism trade-off when
executing multiple queries concurrently. One important
characteristic of pipelined execution is that the slowest operation
in the pipeline bounds the overall performance. Sharing work
between queries can therefore have unexpected effects on
performance if it shifts bottlenecks.

Closer to the context of our work, [26] presents a model for the
performance of a database system that applies pipelined execution
to single multi-operation queries. We use a similar model to study
how performance differs when multiple concurrent queries execute
in parallel with and without work sharing.

Parallelism becomes increasingly important for database systems
in the emerging computing landscape, which consists of highly
parallel chip multi-processors and large main memories.

2.3 Computing Landscape

Chip Multi-processors. Computer systems are currently
undergoing a major shift toward improving performance through
parallel execution rather than relying on advances in clock speed
and aggressive micro-architectures. Clock speed increases have
recently slowed and even reversed due to overriding power
concerns in  some cases’. Aggressive  micro-architectural
techniques suffer from scalability and complexity problems while
yielding diminishing returns, especially for database workloads
[17]. At the same time, transistor budgets continue to increase
relentlessly per Moore’s Law.

Stamping out multiple cores per die and increasing on-chip cache
capacities provide two power- and complexity-friendly uses for
those extra transistors. Nearly all major hardware vendors already
sell CMP configurations featuring two to eight cores with support
for up to four hardware thread contexts per core. L2 caches
approaching 20MB or more are also available, but oversized
caches actually reduce database performance [8]. Therefore, in the
near future we anticipate a computing landscape dominated by
multi-core chips featuring modest caches and dozens or even
hundreds of execution contexts. The DBMS must provide scalable
thread-level parallelism to achieve peak performance in this new
landscape.

Main Memory Capacity. Available system memory continues to
increase exponentially. Five years ago 20-40GB hard drives were
common,; reasonable server configurations today sport 32-64GB of
main memory. Versioned buffer pools [3] reflect this trend: they
reduce lock contention by accumulating multiple versions of
database pages in memory as they are modified, trading extra
memory for improved performance. Large memories mean the
working set of many databases fits entirely in main memory,
resulting in compute- or memory-bound query processing. Even
when workloads do not fit entirely in main memory, a large
fraction does fit.

L Consider Intel’s 3.8GHz Pentium 4 “Prescott” (2004) and 2.66
GHz Core 2 (2007) processors, for example.

Work sharing consistently and significantly improves performance
when it eliminates redundant 1/0; the benefit of work sharing in
memory resident workloads is much less predictable and depends
on factors such as the nature of the queries involved, available
processing power, and even scheduling decisions.

3. SHARING IS NOT ALWAYS GOOD

In this paper, we present a counter-intuitive result regarding work
sharing: sharing may be detrimental to performance, even if the
system has multiple instances of sharable queries awaiting
execution. The explanation is rooted on the delay imposed on the
sharers at the pivot operator (the root of the query sub-plan being
shared). The pivot operator incurs additional work for each sharer,
because it has to send results to each one of them. This additional
work imposes delays that affect all sharers and may offset the
performance advantage of work sharing. Once the delays become
too large reducing the degree of sharing and performing some
redundant work in parallel can result in higher performance
because it shortens the critical path of the query while using
otherwise idle processors.

We show experimentally the existence of the sharing trade-off and
investigate the sharing trends as a function of the number of
sharers and the number of processors. We perform experiments on
a selection of representative scan-heavy and join-heavy TPC-H
queries [23] running on a Sun UltraSparc T1 server.

3.1 Experimental Setup

The UltraSparc T1 server features 8 cores on a single chip, each
with a private first level cache, while communication between the
cores is facilitated through a shared L2 cache. Each core supports 4
hardware contexts, or as many 32 active threads on a single chip.
These threads appear as individual processors to the operating
system. Each core executes instructions from available threads in a
round-robin fashion, guaranteeing fairness of execution.

We execute a selection of TPC-H queries on a 1GB database
(memory-resident) and measure the speedup of executing the
query with work sharing over executing the query without work
sharing. To validate our model, we compare the measured speedup
against the model’s prediction. Our selection of TPC-H queries
includes scan-heavy queries (g1, g6) and join-heavy queries (g4,
g13). The selection of the queries is based on the characterization
in [21]. To avoid random perturbations that may skew our results,
we fix the query predicates to constant values.

Under normal circumstances the system exploits work sharing
opportunities wherever they might occur in the plan, coalescing
even entire queries when possible. To keep the database engine
from eliminating the identical queries used in these experiments,
we therefore allow sharing only at one selected node of each query
plan. Queries g1 and g6 potentially share the scan operator, while
g4 and g13 share at the join operator. To measure the effect of
sharing under varying conditions, in our experiments we vary the
number of clients, where all clients submit identical queries.

The model takes as input the amount of work performed by each
node in the query plan. We build a model for each query type by
profiling the system during a few test query invocations, both with
and without work sharing. We then solve a system of linear
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Figure 2. Speedup of work sharing for scan-heavy (left) and join-heavy (right) queries.

equations to divide up the active time for of each operator among
the different nodes of the query plan. Once the amount of work
performed by each operator is known, the values can be plugged
into the model to predict the effect of work sharing.

Ideally, the model’s parameters would be estimated online,
allowing the system to respond effectively to changing workloads.
In this paper we employ off-line parameter estimation and
concentrate on evaluating the model’s effectiveness. However,
because parameter estimation is straightforward we anticipate no
significant barriers to online estimation.

3.2 Database System Framework

We run our selection of TPC-H queries on a prototype database
system called Cordoba. Our results are applicable to any database
system capable of sharing work between pipelined query plans, so
we choose to utilize Cordoba because of its flexibility in sharing at
arbitrary operators of a query plan, as well as source code
availability.

Cordoba is a staged database system [9] that focuses on in-memory
databases running on highly parallel processors (e.g., CMPs). A
staged server processes work in “stages” rather than as monolithic
requests. Each stage implements one relational operator and
maintains private data and control mechanisms. Incoming requests
are decomposed into “packets” and routed to the appropriate
stages. Each packet indicates the work requested by this operator
on behalf of the incoming query, and can be scheduled
individually, as its execution is decoupled from the others. Thus,
staging naturally enhances workload parallelism and can utilize
otherwise idling computational resources.

At the same time, Cordoba’s highly modular design easily
incorporates dynamic work sharing policies. When a new packet
arrives at a stage’s queue, the stage thread searches the queue for
other packets that request the same operation. If it finds work
sharing opportunities, it “merges” the packets. That is, it executes
the operation only once and outputs the intermediate results to all
interested parties.

The main difference between Cordoba and its predecessor, QPipe
[11], with respect to our discussion in this paper is that the
execution model does not follow the traditional demand-driven,

pipelined model. Instead, the intermediate results between
operators are packed into pages (of typical size of 4K). Such an
execution model has been shown to improve both instruction and
data locality, as well as reducing the synchronization cost between
the producer-consumer pairs [16,2,27].

3.3 Results

We experimentally measure the speedup of work sharing for our
selection of TPC-H queries running on 1, 2, 8, and 32 processors.
Figure 2 (left) shows the speedup of work sharing in scan-heavy
TPC-H queries g1 and g6 as the number of clients increases. Work
sharing attains speedups up to 1.8x when the queries execute on a
uniprocessor. However, as the number of participating processors
increases, sharing quickly hampers performance.

These queries incur a significant amount of per-sharer work at the
pivot operator which slows down each sharer. Thus, as the number
of potential sharers increases, this slowdown quickly overwhelms
the performance benefit of sharing work and causes speedup to
level off. If only few processors participate (e.g., 1 processor) the
slowdown imposed on each sharer has no detrimental effect as
compared to unshared execution, because the sharer will have to
wait for a processor quantum to execute anyway. Thus, any
amount of saved work improves performance, as shown by the 1
processor speedups. However, if many processors are available for
execution (e.g., 32 processors) then work sharing slows down each
sharer enough to result in overall performance degradation, as
shown by the 32 processor speedups.

Figure 2 (right) shows the experimentally measured speedups of
work sharing in join-heavy TPC-H queries g4 and q13 for 1, 2, 8,
and 32 processors. Our results indicate that work sharing is always
beneficial for the join-heavy queries in our benchmark suite. These
queries perform most of the work at the scan and join operators.
Under work sharing, both operators are shared, and the per-sharer
work at the pivot operator (join) is insignificant compared to the
work performed by the scan and the rest of the join. Thus, work
sharing always attains high speedup compared to unshared
execution. Also, the fewer the processors participating, the larger
the effect of saving work. Thus, speedups are higher for small
number of processors (e.g., 1 processor).



4. ANALYTICAL MODEL

In order to predict the benefit of work sharing in a given system we
desire a model with the following properties. It should be as simple
as possible, while handling a large enough class of queries to be
generally useful. It can be a binary variable; it need not give
perfectly accurate speedup predictions. Ideally, the parameters
should also be easy to obtain automatically, perhaps even at
runtime.

Our goal is to predict the performance of the queries when they
execute either independently or with work sharing, given some
number of processors with which to execute them. The system can
then use this comparison to apply work sharing intelligently.

Because we consider pipelined execution of queries, performance
is proportional to the rate (x) at which tuples flow through the
queries. Given m potentially shared queries and n processors to
execute them on, the benefit from work sharing is simply the ratio
of the rates with and without work sharing:

Xshared(m’ n)
Xunshared(m’ n)

If Z(m,n)>1 work sharing is net win; otherwise unshared
execution is better.

Z(m,n) =

The extensive literature on parallel databases provides a good
starting point. The model we develop here is similar to the one
described in [26]. In particular, we assume that the workload is
memory-resident, that all operators are fully pipelinable, and that
cardinalities are large enough that the flow of tuples between
operators can be treated as continuous rather than discrete. We also
assume that buffering between operators is sufficient to smooth out
any burstiness in the tuple streams. Significant differences with the
model in [26] include

e Processing occurs in a single shared-everything CMP with
many cores rather than a networked set of shared-nothing
processing nodes.

¢ The system must process multiple queries in parallel.

e We are interested only in relative performance, so we
ignore tuple counts and time units whenever possible and
focus on average rates instead.

« All operator rates are relative to the forward progress of
one reference tuple stream for the query (full explanation
follows).

¢  Finite buffering means that slow consumers throttle
producers.

e We assume that operators pass results on to their
consumers as soon as possible and at a constant rate. We
therefore neglect pipeline filling times, which will be
short compared to total execution time.

Table 1 summarizes the terms used in the following sections.

4.1 Components of the Model

We begin with a simplistic model which assumes that all queries
consist of fully pipelinable operators and have the same peak rate
of forward progress, and that none of the queries has begun

Table 1. Definitions of terms used in the model

Term Definition

p Total work per unit of forward progress in an operator

w  [Work an operator performs per unit of forward progress

s Work required to output a unit of forward progress to
each consumer of an operator

i An input stream for the current operator

j An output stream for the current operator
keK One of the operators from query plan K

r The peak rate of forward progress for a query

u The maximum processor utilization per query

x(m,n) The rate of forward progress given m queries and n
available processors

) The “pivot” operator, the highest point in each query
plan where work sharing is possible

Z(m,n) The benefit of work sharing given m queries and n
available processors

execution yetl. We defer for Section 5 the discussion on how to
deal with mismatched rates and stop-&-go operators such as sorts.

4.1.1 Operators

Each operator in a query plan features both input streams (usually
one or two) and output streams (usually one). We treat all streams
as carrying units of forward progress, rather than tuples, so that all
operators in a plan are comparable. Suppose we choose some node
in the query plan as a reference. The query will not complete until
the reference node has finished processing every tuple it is
destined to receive. Each operator can therefore define “forward
progress” as how much each tuple it handles will contribute toward
the reference operator’s total progress. This notion of progress
implicitly captures the selectivity of operations in the query plan.

Each unit of overall forward progress delivered by input stream i
requires some amount of work from the operator, denoted by w;. In
addition the operator must output units of forward progress to its
consumers; consumer j requires s; work per unit of forward
progress. The total work per unit of forward progress, p, is

therefore

p:Z:wi + Zsj

i e inputs j € outputs

4.1.2 Queries

A query plan consists of a set of operators, K, linked to form a
pipeline. Due to the tight coupling of operators in the pipeline all
operators proceed at the same rate of forward progress, as
determined by the slowest (bottleneck) operator in the query. The
peak rate of forward progress for the query is therefore given by

_ 1 _ 1
max{ p,:keK}

pmax

! [11] discusses situations when this need not be the case.



All operators other than the bottleneck spend at least some of their
time waiting for input or output to become ready. We can therefore
calculate the maximum processor utilization of a query as

p ’
u = Lk U
ke K Pmax Pmax
Note that u reflects the level of pipeline parallelism available in the
query and can easily be greater than 1. In a moment, u’, the total
work per unit of forward progress will also become useful.

4.1.3 Limited Hardware Resources

A query’s peak throughput, r, assumes that the system makes at
least u processors available to the query. However, a loaded
system may not have enough spare processing power to achieve
the peak rate.

Let n be the number of processors the system makes available to a
query or group of queries. If u>n the system will be forced to
time-share operators, uniformly reducing the rate of the query by a
factor of n/u. We can therefore define the true rate of forward
progress, given n available processors, as

x(n) = r.min(l,PD = min(pl 5)
max

where the term u’ appears in the last, simplified version.

4.1.4 Contention for Shared Hardware Resources

CMP architectures contain many shared resources such as caches,
memory bandwidth, and functional units. As more processors
share a given resource, growing contention will reduce the
effective processing power through increased stalls. However, the
model we have described so far optimistically assumes that
queries—and threads within queries—interact only through the
buffers that connect pipeline stages. Figure 3 exhibits how
contention affects the performance. It shows a microbenchmark in
the Niagara chip. In particular, it plots the normalized cost per
operation as the number of threads that execute the specified
operation increases. Additionally, it plots the predicted cost if we
assume that only n* processors are available (0<k<1). The modeled
effective number of processors closely tracks the measured system
performance.
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Figure 3. Contention for functional units in the Niagara chip.
The model needs to take into consideration the change in the cost
of simple operations as contention increases.

Thus, in order to account for contention in shared resources on any
system, we assume that there are effectively only nk processors
available, with 0<k<l. The value of k depends on both the
hardware and workload, and whether the system applies work
sharing. We choose this simple function because it works well in
practice and k is easy to measure empirically; a more accurate
contention model could be substituted instead if need be.

4.2 Unshared Execution

If the system executes a set (M) of queries independently we
simply increase the rate by a factor of |M| and sum up the peak
utilizations of the queries:

runshared('vl) = M[-r

u'unshared('vl) = Z u',

meM
The value of rynshareq reflects the fact that all queries have the
same rate and finish at the same time. Note, however, that ry=r,
does not imply that two queries perform the same amount of work
(i.e., U’y =U’5) unless the queries also have the same plan. The
value of U’ nshareq reflects this fact.

4.3 Shared Execution

Let ¢ be the “pivot” operator, that is, the point in each query plan
where work sharing will occur. Three major changes occur if the
system chooses to apply work sharing to the query group:

1. All replicated work below the pivot is eliminated.

2. The pivot must multiplex output to multiple consumers.

3. The slowest operator in M throttles all queries.

Let the phrase “k is below ¢” indicate that operator k is a member
of the query plan sub-tree rooted at ¢ and therefore provides input
to the pivot either directly or indirectly. Similarly, “k is above ¢”
indicates that k is not part of the sub-tree rooted at ¢. In a shared
plan there is only one instance of each k below ¢; all shared queries
use the output of ¢. To reflect this we drop the query identifier
from subscripts for k below ¢.

Because ¢ must send output to all consumers in M, py, becomes

p(M) = w, +, 2 Smo

and may become the new bottleneck (pyay) if the sum of the sy,
values grows too large.

If operator ¢ did not become a new/worse bottleneck then

Ishared = unshared; ~ Otherwise  rgnared =_|M|/p¢ <Tynshared: 1N
contrast, U shared # U unshared; WE compute it as follows:

u’shared(M) = Z pk + p¢(M) + z pk
k below ¢ meM "
kn € K, above ¢

4.4 Example Revisited

Using the profiling procedure given in Section 3 we extract the
parameters for TPC-H Q6 running on our test machine. The query
consists of two pipeline stages—table scan and aggregation—with
work sharing allowed at the table scan stage in our experiments.
The query is captured by three parameters: w = 9.66 and s = 10.34



describe the scan, and p = 0.97 captures the aggregate. As we will
see, these parameters accurately capture the query’s performance
even without accounting for hardware contention, so we fix k = 1.

Applying the parameters to the model for unshared execution first,
we get
Py = 20

pmax =

2 u =21 M|

meM

u,unshared(M) =

- (1 _n
Xunshared(M, n) = [M] - mln(zoa 21. ||\/||)
= min(IML 0.
= mln(zo, >
Similarly, applying the model for shared execution yields
Prmax(M) = 9.66 +10.34 - M|
Ughared(M) = 9.66 +11.31 - [M|

. 1 n
X (M’n) = |M|-mln( s )
shared Pmax(M)” U shared(M)
= min 1 :
9.66 " 9.66
=== 11034 == +11.31
IM| IM|

A close examination of the equations reveals several interesting
points. First, s is quite large, and ¢ is a worsening bottleneck as
more queries share its output. This, in turn reduces peak utilization
to the point that shared execution only utilizes slightly more than
one processor no matter how many sharers are added to the mix.
Unshared execution, on the other hand, does not suffer from rate
throttling or bounded utilization. Its performance scales linearly
until all available processors are utilized. In this particular case we
see that work sharing is only attractive when one processor is
available.

Section 6 explores how parameters such as N and S4 impact the
usefulness of work sharing, while Section 7 evaluates the accuracy
of the model, including the parameters for Q6 discussed here.

5. EXPANDED COST MODEL

The model presented in the previous section makes several
simplifying assumptions that limit its applicability. This section
expands the model by removing some of those assumptions

5.1 Mismatched Rates

Up until now we have assumed that all queries in a group proceed
at the same rate. This will not always be the case in practice. The
model for shared query execution already handles differing peak
rates because all queries will get throttled to match the slowest
consumer. However, it is more difficult to model unshared
execution because faster queries will complete and exit the system
before slower ones. As a result the behavior of the system is no
longer uniform over time, breaking a key assumption of the model.
In order to address this difficulty we must first distinguish between
open and closed systems in the queueing theory sense.

Query arrivals in an open system are independent of each other; as
long as the system can process queries faster than they arrive, on
average, changing the response time of a request has no effect on
overall throughput. The arrival rate controls peak throughput.
Because arrivals in an open system are independent of response
time, throttling a group of queries to the same rate is equivalent to
letting the faster queries complete early and leave their resources
idle. Therefore, in an open system, we can simply model all
unshared queries as if they were throttled to the rate of the slowest
one. The equations all remain unchanged.

A closed system, on the other hand, has a fixed number of requests
in the system. Completed requests are immediately replaced by
new ones, so delays imposed by work sharing directly affect
system throughput by preventing future requests from arriving. In
addition, we can no longer assume that resources remain idle once
a query completes.

Modeling unshared query execution in a closed system remains an
open problem. For now we suggest a crude approximation that
assumes a similar query will replace the current one as soon as it
completes. We therefore leave the equations for shared execution
unchanged, but modify rynshareq t0 reflect the harmonic mean of
peak throughputs, and uynshareq SO that each query is throttled only
by its own pp,ax rather than that of the group:

Tunshared = M
unshare
2 Pax(M
meM
M Kf) b
Uunshared =

m=1k=1 pmax(m)

The model then allows faster queries to raise rypshareq, While
assuming that they use their full allotment of resources until the
last query completes. While certainly not optimal, this
approximation is arguably better than simply assuming an open
system, and in our experience it leads to better binary decisions.

Fortunately, mismatched rates are often not an issue. First, we are
only concerned with modeling queries that could potentially be
shared; queries with mismatched rates are not a problem if they
cannot be shared anyway. Second, many queries are bottom-heavy,
meaning that potentially shared queries (which have the same
“bottom” to their query plans) will often have the same peak rates.
Third, results bound for extremely slow consumers can be
materialized, rather than pipelined, to prevent the latter from
slowing down the entire pipeline.

If all else fails, the system can simply avoid applying work sharing
among queries with mismatched rates. Because the queries have
identical sub-plans, the mismatched rate indicates a top-heavy
query that will benefit less from work sharing anyway (see
Section 6.3). In addition our results in Section 8.1 show that not
sharing at all is generally better than blindly sharing work.

5.2 Modeling Stop-&-Go Operators

The key observation when considering stop-&-go operators, such
as sorting (used in aggregations, merge joins, etc.) or the hash
building phase of the mainstream hash join, is that the
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Figure 5. Predicted speedup of work sharing over independent execution as the number of processors varies (left), as
the amount of serial work varies (center), and as the amount of work below the pivot varies (right).

production/consumption rates of the operators below the stop-&-
go operator are decoupled from the those of the operators above it.

For the purposes of work sharing, each phase of the query plan can
be modeled separately. For example, consider a query containing a
sort stage. From a modeling perspective the query looks like three
queries: the first sub-query has a moderately slow root node
(sorting runs), and is followed by a sub-query that does not interact
with the system (merging runs), followed by a final sub-query with
an extremely fast scan at its leaf node (outputting the sorted result).

During the sort phase the inputs to the sort can be shared with other
queries; once the sort phase completes the inputs have been
completely consumed and work sharing is no longer possible.
Similarly, during the output phase queries requesting similar sort
operations can share the sort’s output values, once they become
available.

5.3 Modeling Joins

The model presented in the previous sections naturally captures
pipelined join operators, but not all join algorithms are fully
pipelinable. The following subsections discuss the three basic join
types, namely (block) nested-loop join (NLJ), merge join (MJ),
and hash join (HJ).

Nested-Loop Join (NLJ): The nested-loop join is a fully
pipelinable join operator. It is the simplest case and does not
require any change in the model. We simply model an operator
with two input streams, with one stream potentially much more
expensive than the other.

Merge Join (MJ): We treat merge joins as three different
operations. The first two being the two sort (stop-&-go)
operations, one for each input, and one being their merging. In this
case, the query is divided into three different sub-queries. If,
however, any input is already sorted then the corresponding sort
operation is unnecessary and the merge join can be pipelined.

Hash Join (HJ): Similarly with merge joins the mainstream
version of the hash join is represented as two separate operations,
the hash building and the hash probing phases. The hash building
is a stop-&-go operation, while the hash probing is fully
pipelineable. Therefore, the query is divided into two sub-queries,

P=10

Shared

Figure 4. Executing M queries with and without work sharing

Unshared

one consisting of all the operations below (and including) the hash
building operation, and the second with all the operations above it.

Starting with the symmetric hash join [25], several proposals for
pipelinable hash joins can be found in the literature [13,24]. If such
an implementation of the hash join is employed by the system,
then this operation is pipelineable and the simple model again
suffices.

6. SENSITIVITY ANALYSIS

As can be seen in the example from Section 3, aspects of work
sharing that reduce available parallelism can lessen or even
eliminate the advantages that come from reduced work in the
system. This section explores how various parameters from the
model impact parallelism and performance in a system. This
section explores how the effect of work sharing changes with

*  Available processing power (n)
»  Cost to output shared data to each consumer (s;)

e Fraction of work eliminated by sharing,
In all the cases the lesson is that work sharing only helps if the
unshared execution would saturate the available hardware.

Unless otherwise stated, for the analysis we use a set of M
identical queries, each with three stages. Sharing can potentially
occur at the middle stage. Figure 4 depicts the execution plans if
work sharing is employed (left) or not (right). The bottom operator
has p = 10, the second (pivot) operator has w =6 and s =1, and
the top operator again p = 10. Work sharing therefore eliminates
nearly 60% of the work for this query.
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Figure 6. Model validation using scan-heavy queries (left) and join-heavy queries (right)

6.1 Available Processing Power (n)

The number of available processors has perhaps the most direct
effect on the performance of work sharing. Figure 5 (left) plots the
speedup over independent execution achieved by work sharing m
queries at a time along the x-axis. The figure has plots for available
processor counts ranging between 1 and 32. As the figure
indicates, systems with very few processors available benefit the
most from work sharing, while those with an abundance of
processing power must seek parallelism as a first priority.

From the model we learn that, individually, each query requires
2.7 processors for peak throughput, while work sharing provides
limited parallelism and utilizes only 10 cores even for large
numbers of shared queries. For a given number of available
processors there are (up to) three phases of behavior for work
sharing. At first there is not enough work to saturate the machine
even without work sharing; so the latter cannot improve
performance. As the load increases the limited parallelism
available through work sharing actually hurts performance.
Finally, as load increases still further, the elimination of extra work
due to work sharing achieves a net speedup for some values of n
(e.g.,16 CPU). As we can see, the model can help predict whether
work sharing is always (4 CPU), never (32 CPU), or sometimes
(16 CPU) worthwhile, depending on the current query and
situation.

6.2 Serialization due to Work Sharing

One of the primary drawbacks of work sharing is its serializing
effect on the shared queries: the pivot (which executes as a single
thread like all operators) must sequentially output results to all M
consumers. The pivot can quickly become a bottleneck if s, the
cost of outputting to each consumer, is significant compared to
Pmax- Figure 5 (center) plots the performance of a 32-core system
as s varies. It demonstrates how a high s quickly saps all benefits
from work sharing if abundant processing resources are available.
For s =0, work sharing imposes no serialization and saturates the
machine by 30 shared queries. As serialization increases it
becomes difficult (s=.25) and finally impossible (s=1.0) to
utilize the hardware fully, resulting in a net loss of performance. In
order to achieve scalable performance through work sharing,
systems should therefore strive to keep s as low as possible.

6.3 Fraction of Work Eliminated

Intuitively, the most attractive queries for sharing would be those
that allow the most work to be eliminated. The model confirms
that this is indeed the case. We modified the baseline query by
splitting the top operator into five balanced pipeline stages, each
with p = 8; each of the five represents 14% of the total work in the
query. We then vary the fraction of work eliminated by moving
operators below the pivot one by one. Figure 5 (right) shows how,
for an 8-processor system, work sharing improves performance by
a larger fraction each time another operator moves below the pivot,
except the last operator, which gives an unexpected diminishing
return. Examining Ugpareq (the peak processor utilization) for this
case shows that work sharing only exploits two of the eight
processors available, while a single unshared query utilizes more
than four. Though work sharing is beneficial because it eliminates
so much work, its tendency to reduce parallelism bounds the
maximum achievable speedup to roughly one eighth of the 50x we
might expect from eliminating 98% of the work in the system.

7. EXPERIMENTAL VALIDATION

We experimentally validate our analytic model on a selection of
scan-heavy and join-heavy TPC-H queries running on an
UltraSparc T1 server. The experimental setup is described in
Section 3.1 and Section 3.2.

Figure 6 (left) shows the predicted and experimentally measured
speedups of work sharing for scan-heavy TPC-H queries Q1 and
Q6 for 1, 2, 8, and 32 processors. The experimental measurements
are depicted using points, while the lines represent the
corresponding model predictions. The maximum error of the
model’s predictions is 22%, while the average error is only 5.7%.
Thus, the analytic model provides an accurate first-order
approximation of the expected speedup, especially in light of the
fact that the model, in the interest of simplicity, ignores important
hardware effects like cache misses (Q1 2 CPU) and contention for
shared resources like caches, memory, on-chip network (Q6 1
CPU).

Figure 6 (right) shows the predicted and experimentally measured
speedups of work sharing for join-heavy TPC-H queries Q4 and
Q13 for 1, 2, 8, and 32 processors. Our results indicate that work
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sharing is always beneficial for these join-heavy queries, a
behavior accurately captured by the corresponding models. The
model’s maximum error for join-heavy queries is 30%, while the
average error is 5.9%.

The scan-heavy and join-heavy queries show radically different
behaviors, with the scan-heavy speedup curves flattening out
quickly and the join-heavy queries providing ever-increasing
speedups. Despite these differences, we have shown how a simple
model captures the first order performance effects and achieves
predictions with reasonable accuracy. It is also important to note
that despite the model’s error rate, the model’s recommendations
on the benefits of sharing are nearly always correct: it accurately
distinguishes cases where sharing improves performance from
those where unshared execution should be preferred. Thus, when
used in a binary decision-making process, our analytic model will
provide a good basis for deciding whether to share or not to share.

8. EXPLOITING THE MODEL

The model is simple enough to directly incorporate into a DBMS.
For example, systems that detect and exploit work sharing at run-
time, like [11,8], can integrate the model to their decision
procedure, while systems that are based on a multi-query optimizer
[20,19] can evaluate the proposed execution plans using the model.
In this paper we evaluate the effectiveness of the model by
implementing it in Cordoba.

8.1 Multiple Groups of Shared Queries

Sharing fewer queries at a time is one potential way to exploit
work sharing while reducing the serialization penalty that results.
For example, consider the query from Section 6.1. Work sharing
hurts performance in many-CPU cases because it allows the
serialization penalty to grow too large. If the system instead limits
the number of queries allowed to join any one work sharing group,
and partitions the available processors among multiple groups of
shared queries, the system could reap the benefits of both work
sharing and parallelism.

Ideally the system would add shared queries to a group only until
the pivot operator started to become a bottleneck, thus maximizing
the benefits of work sharing without reducing available

parallelism. Our implementation in Cordoba naturally captures this
optimization because it only allows queries to join a sharing group
if the model predicts a benefit. If not, the system checks the
remaining groups in turn. If none of the groups permit sharing the
query will begin executing independently, though it may be joined
later on by other queries.

8.2 Experimental Evaluation

Our implementation of the model in Cordoba makes educated
recommendations to the execution system at run time about
whether to allow work sharing or execute the participating queries
independently. We evaluate the effectiveness of our model by
running a mix of scan- and join-heavy TPC-H queries (Q1 and Q4,
respectively) using the experimental setup described in Section 3.
We vary the fraction of the workload consisting of Q4, from 0% to
100% of the queries submitted, then measure the throughput
achieved by each of three policies. An always-share policy applies
work sharing whenever possible, while a never-share policy
conservatively executes all queries independently. The model-
guided policy dynamically evaluates conditions at runtime to
determine whether to share a particular query or not.

Figure 7 compares the throughput achieved by Cordoba using each
of the three policies, running 5 clients on 2 processors (left) and 20
clients on 32 processors (right). Work sharing is always beneficial
in the two-processor system, so the always-share policy achieves
the highest performance of the three, while the never-share policy
leads to poor (and worsening) results by comparison. The model-
guided policy closely tracks the always-share policy. The
performance gap occurs because Cordoba makes sharing decisions
at runtime as queries arrive in the system, and has no way to know
how many queries might eventually come. By contrast, the always-
share policy makes the offline optimal decision. Approaches that
work with batches of queries (offline), such as multiple query
optimization, would not suffer this shortcoming.

The 32-core system (Figure 7 right) presents a completely different
hardware landscape to the query engine. Surprisingly, the never-
share policy achieves an average of 165 queries/min, more than
double the 80 queries/min achieved by always-share. This occurs
because the penalty for sharing the wrong queries outweighs the



benefit of sharing the right ones. The model-based policy
outperforms both of the other two by considering each query
individually in the context of the conditions at runtime. It achieves
200 queries/min— speedups of 20% and 2.5x, on average, over the
static policies. The maximum speedup is even larger— 40% and
6.7x, respectively— indicating that intelligent work sharing is vital
to achieve maximum performance.

9. CONCLUSIONS

This paper presents and evaluates the trade-off between work
sharing and parallelism, a phenomenon that cannot be ignored by
database systems that aim for high performance in the looming
multi-core computing landscape. We show that indiscriminate
work sharing actually hurts performance by serializing work that
otherwise could have gone in parallel. On the other hand, policies
that completely avoid work sharing give up the opportunity to
eliminate redundant work. We provide a simple analytical model
that captures the trade-off, allowing database systems to apply
work sharing judiciously, at runtime. We show that a system must
first strive to utilize all available hardware resources, sacrificing
work sharing opportunities if necessary to provide parallelism. We
integrate the model into a staged database system, capable of
exploiting work sharing opportunities at run-time, and we show
that basing the decision for work sharing on the model outperforms
static schemes that always or never apply work sharing.
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