;; edges and nodes are both turtles breeds [edges nodes] ;;;;;;;;;;;;;;; ;; Variables ;; ;;;;;;;;;;;;;;; nodes-own [ node-clustering-coefficient ;; clustering coefficient of the node distance-from-other-nodes ;; list of distances of this node from other nodes has-change? ] ;; rewired? keeps track of whether the edge has been rewired or not edges-own [rewired?] globals [ clustering-coefficient ;; the clustering coefficient of the network ;; this is the average of clustering coefficients of all nodes average-path-length ;; average path length of the network clustering-coefficient-of-lattice ;; the clustering coefficient of the initial lattice average-path-length-of-lattice ;; average path length of the initial lattice infinity ;; a very large number. ;; used to denote distance between two nodes which ;; don't have a connected or unconnected path between them highlight-string ;; message that appears on the node properties monitor nbr-rewired ;; counter for number of edges that get rewired. used for plots. time ] ;;;;;;;;;;;;;;;;;;;;;;;; ;;; Setup Procedures ;;; ;;;;;;;;;;;;;;;;;;;;;;;; to setup ca set infinity 99999 ;; just an arbitary choice for a large number set-default-shape nodes "circle" set-default-shape edges "line" make-nodes ;; we need to find initial values for lattice wire-them ;;calulate average path length and clustering coefficient for the lattice do-calculations ;; setting the values for the initial lattice set clustering-coefficient-of-lattice clustering-coefficient set average-path-length-of-lattice average-path-length set nbr-rewired 0 set highlight-string "" set time 0 rewire-all layout ask turtle random num-nodes [ set has-change? true set color red + 2 ] end to spread-once if( any? nodes with [has-change? = false ] ) [ set time time + 1 ask nodes with [ has-change? = true ] [ ask __edges-neighbors [ if( random-float 1 <= ( (node-clustering-coefficient-of myself + .1) / ((node-clustering-coefficient-of myself + .1) + (node-clustering-coefficient-of self + .1)) ) ) [ set has-change? true set color red + 2 ] ] ] ] end to spread-change while [ any? nodes with [has-change? = false ]] [ set time time + 1 ask nodes with [ has-change? = true ] [ ask __edges-neighbors [ if( random-float 1 <= ( (node-clustering-coefficient-of myself + .1) / ((node-clustering-coefficient-of myself + .1) + (node-clustering-coefficient-of self + .1)) ) ) [ set has-change? true set color red + 2 ] ] ] ] end to make-nodes create-custom-nodes num-nodes [ set color (gray + 2) set has-change? false ] ;; they will form a circle __layout-circle nodes screen-edge-x - 1 end ;;;;;;;;;;;;;;;;;;;;;;; ;;; Main Procedure ;;; ;;;;;;;;;;;;;;;;;;;;;;; to rewire-all ;; kill the old lattice, reset neighbors, and create new lattice ask edges [die] wire-them set nbr-rewired 0 ask edges [set rewired? false] ask edges with [not rewired?] [ without-interruption [ ;; whether to rewire it or not? if (random-float 1) < rewiring-probability [ ;; "a" remains the same let node1 __src-end ;; if "a" is not connected to everybody if value-from node1 [count __edges-neighbors] < (num-nodes - 1) [ ;; find a node distinct from node1 and not already a neighbor of node1 let node2 random-one-of nodes with[ (self != node1) and (not value-from self [__edges-neighbor? node1]) ] set nbr-rewired nbr-rewired + 1 ;; counter for number of rewirings ;; rewire the edge rewire node2 ] ] ] ] ;;calulate average path length and clustering coefficient for the network and plot do-calculations end to do-calculations ;; find the path lengths in the network find-path-lengths ;; check whether network got disconnected and ignore those runs (should not happen often); ;; we only want to calculate average path length when we have one connected component if (sum values-from nodes [length remove infinity distance-from-other-nodes] ) != (num-nodes * num-nodes ) [ show "network got disconnected" stop ] set average-path-length (sum values-from nodes [sum remove infinity distance-from-other-nodes]) / (sum values-from nodes [length remove infinity distance-from-other-nodes] ) ;; find the clustering coefficient and add to the aggregate for all iterations find-clustering-coefficient end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; Clustering computations ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; to find-clustering-coefficient ifelse count nodes with [count __edges-neighbors > 1] = 0 [ ;; it is undefined ;; what should be this? set clustering-coefficient 0 ] [ let total 0 ask nodes with [count __edges-neighbors <= 1] [set node-clustering-coefficient "undefined"] ask nodes with [count __edges-neighbors > 1] [ let node self set node-clustering-coefficient (2 * count edges with [value-from __src-end [__edges-neighbor? node] and value-from __dest-end [__edges-neighbor? node]] /( (count __edges-neighbors) * (count __edges-neighbors - 1) ) ) ;; find the sum for the value at nodes set total total + node-clustering-coefficient ] ;; take the average set clustering-coefficient total / count nodes with [count __edges-neighbors > 1] ] end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; Path length computations ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Implements the Floyd Warshall algorithm for All Pairs Shortest Paths ;; It is a dynamic programming algorithm which builds bigger solutions ;; from the solutions of smaller subproblems using memoization that ;; is storing the results. ;; It keeps finding incrementally if there is shorter path through ;; the kth node. ;; Since it iterates over all nodes through k, ;; so at the end we get the shortest possible path for each i and j. to find-path-lengths ;; reset the distance list ask nodes [ set distance-from-other-nodes [] ] let i 0 let j 0 let k 0 let node1 random-one-of nodes let node2 random-one-of nodes ;; initialize the distance lists while [i < num-nodes] [ set j 0 while [j < num-nodes] [ set node1 turtle i set node2 turtle j ;; zero from a node to itself ifelse i = j [ set distance-from-other-nodes-of node1 lput 0 distance-from-other-nodes-of node1 ] [ ;; 1 from a node to it's neighbor ifelse value-from node1 [__edges-neighbor? node2] [ set distance-from-other-nodes-of node1 lput 1 distance-from-other-nodes-of node1 ] ;; infinite to everyone else [ set distance-from-other-nodes-of node1 lput infinity distance-from-other-nodes-of node1 ] ] set j j + 1 ] set i i + 1 ] set i 0 set j 0 let dummy 0 while [k < num-nodes] [ set i 0 while [i < num-nodes] [ set j 0 while [j < num-nodes] [ ;; alternate path length through kth node set dummy ( (item k distance-from-other-nodes-of turtle i) + (item j distance-from-other-nodes-of turtle k)) ;; is the alternate path shorter? if dummy < (item j distance-from-other-nodes-of turtle i) [ set distance-from-other-nodes-of turtle i replace-item j distance-from-other-nodes-of turtle i dummy ] set j j + 1 ] set i i + 1 ] set k k + 1 ] end ;;;;;;;;;;;;;;;;;;;;;;; ;;; Edge Operations ;;; ;;;;;;;;;;;;;;;;;;;;;;; ;; creates a new lattice to wire-them ;; iterate over the nodes let n 0 while [n < num-nodes] [ ;; make edges with the next two neighbors ;; this makes a lattice with average degree of 4 ask turtle n [ __create-edges-with turtle ( (n + 1) mod num-nodes) [ set rewired? false set color gray ] __create-edges-with turtle ( (n + 2) mod num-nodes) [ set rewired? false set color gray ] ] set n (n + 1) ] end ;; rewires the edge by changing b to newb to rewire [newb] let node1 __src-end ask node1 [ __create-edges-with newb [ set color cyan set rewired? true ] ] display ;; update display die end ;;;;;;;;;;;;;;;; ;;; Graphics ;;; ;;;;;;;;;;;;;;;; to highlight ;; reset changes done by previous highlight ask nodes [ ifelse( has-change? = true ) [set color red + 2] [set color gray + 2]] ask edges [set color (gray + 2)] if mouse-inside? [ ;; getting the node closest to the mouse let min-d min values-from nodes [distancexy mouse-xcor mouse-ycor] let node random-one-of nodes with [ count __edges-neighbors > 0 and distancexy mouse-xcor mouse-ycor = min-d] ;; dont want to do recursion, just stopping it ifelse node = nobody [ display highlight ] [ ;; highlight the chosen node ask node [ ifelse( has-change? = true ) [set color pink - 1] [set color sky - 1] let pairs (length remove infinity distance-from-other-nodes) let local-val (sum remove infinity distance-from-other-nodes) / pairs ;; show node's clustering coefficient set highlight-string "Clustering Coefficient = " + precision node-clustering-coefficient 3 + " and Avg Path Length = " + precision local-val 3 + " (for " + pairs + " nodes )" ] ;; highlight neighbors ask node [ ask __edges-neighbors [ ifelse( has-change? = true ) [set color red - 1] [set color blue - 1] let other self ;; highligh edges connecting the chosen node to it's neighbors ask __all-edges [set color blue - 1] ] ] ;; highlight edges connecting the neighbors of the chosen node ;; the number of these edges(along with the number of neighbors) ;; is what determines the clustering coefficient ask edges [ let src __src-end let dest __dest-end if value-from node [__edges-neighbor? src and __edges-neighbor? dest] [set color yellow] ] ] ] end to layout if not layout? [ stop ] ;; the number 10 here is arbitrary; more repetitions slows down the ;; model, but too few gives poor layouts repeat 10 [ __layout-spring nodes 0.2 9 1 display ;; so we get smooth animation ] end ; *** NetLogo Model Copyright Notice *** ; ; This model was created as part of the projects: ; PARTICIPATORY SIMULATIONS: NETWORK-BASED DESIGN FOR SYSTEMS LEARNING IN ; CLASSROOMS and INTEGRATED SIMULATION AND MODELING ENVIRONMENT. ; The project gratefully acknowledges the support of the ; National Science Foundation (REPP & ROLE programs) -- grant numbers ; REC #9814682 and REC-0126227. ; ; Copyright 2005 by Uri Wilensky. Updated 2005. All rights reserved. ; ; Permission to use, modify or redistribute this model is hereby granted, ; provided that both of the following requirements are followed: ; a) this copyright notice is included. ; b) this model will not be redistributed for profit without permission ; from Uri Wilensky. ; Contact Uri Wilensky for appropriate licenses for redistribution for ; profit. ; ; To refer to this model in academic publications, please use: ; Wilensky, U. (2005). NetLogo Small Worlds model. ; http://ccl.northwestern.edu/netlogo/models/SmallWorlds. ; Center for Connected Learning and Computer-Based Modeling, ; Northwestern University, Evanston, IL. ; ; In other publications, please use: ; Copyright 2005 by Uri Wilensky. All rights reserved. See ; http://ccl.northwestern.edu/netlogo/models/SmallWorlds ; for terms of use. ; ; *** End of NetLogo Model Copyright Notice *** @#$#@#$#@ GRAPHICS-WINDOW 495 10 925 461 17 17 12.0 1 10 1 1 1 0 1 1 1 CC-WINDOW 5 527 934 622 Command Center 0 BUTTON 15 19 86 52 NIL setup\n NIL 1 T OBSERVER T NIL SLIDER 13 70 185 103 num-nodes num-nodes 5 150 60 1 1 NIL SLIDER 206 70 477 103 rewiring-probability rewiring-probability 0 1 0.5 0.01 1 NIL MONITOR 495 464 925 513 Node Properties highlight-string 3 1 BUTTON 333 19 477 52 NIL highlight T 1 T OBSERVER T NIL MONITOR 81 116 209 165 NIL clustering-coefficient 3 1 MONITOR 219 116 347 165 NIL average-path-length 3 1 SWITCH 364 124 467 157 layout? layout? 0 1 -1000 BUTTON 99 19 206 52 spread change spread-change NIL 1 T OBSERVER T NIL MONITOR 14 115 71 164 time time 0 1 BUTTON 220 19 303 52 spread once spread-once NIL 1 T OBSERVER T NIL @#$#@#$#@ WHAT IS IT? ----------- This model explores the spread of language variant change throughout a network consisting of 'weak' and 'strong' ties between language community members. (Milroy 2002) proposes that the proportion of 'weak' neighborhood network ties determines the speed with which change propagates through a community. The strength of a network tie is defined by its multiplexity and 'centrality' to a local community. Looking at Belfast working-class neighborhoods, Milroy demonstrated that those speakers with the strongest vernacular (most 'exemplary' of a dialect) were generally those with the strongest network ties. Her hypotheses are: 1. looseknit uniplex networks are susceptible to change. 2. weak ties provide bridges through which information and influence are propagated. This predicts cascade diffusion through multiple weak ties. When discussing the plausibility of a weak tie theory, Milroy use the following behavior to found its reasoning: 1. People central to a close-knit, norm enforcing group are likely to find innovation socially risky, but the adoption of an innovation already on the periphery of the group less so. 2. Socially mobile individuals are forced to deal with out-of-network people regularly, and accomodate to new language variants more freely. To create a model that has a variable number of weak/strong ties, the "small world" simulation was ideal. HOW IT WORKS ------------ This model is an adaptation of a model proposed by Duncan Watts and Steve Strogatz (1998). SETUP creates a connected network of NUM-NODES nodes with a variable amount of 'clustering,' or close-knit groups that include members who share friends. The higher the REWIRING-PROBABILITY, the greater the number of nodes existing in close-knit groups. During SETUP, a node is chosen at random to develop a new language variant of the community's dialect. SPREAD CHANGE will spread this change throughout the entire network. SPREAD ONCE will allow any people speaking the new variant to effect change in any to which they are tied. The CLUSTERING COEFFICIENT is a measure of the proportion of weak/strong ties in the network. A low clustering coefficient is indicative of a network comprised of numerous weak ties. Average Path Length: Average path length is calculated by finding the shortest path between all pairs of nodes, adding them up, and then dividing by the total number of pairs. This shows us, on average, the number of steps it takes to get from one member of the network to another. Clustering Coefficient: Another property of small world networks is that from one person's perspective it seems unlikely that they could be only a few steps away from anybody else in the world. This is because their friends more or less know all the same people they do. The clustering coefficient is a measure of this "all-my-friends-know-each-other" property. More precisely, the clustering coefficient of a node is the ratio of existing links connecting a node's neighbors to each other to the maximum possible number of such links. The clustering coefficient for the entire network is the average of the clustering coefficients of all the nodes. A high clustering coefficient for a network is another indication of a small world. HOW TO USE IT ------------- The NUM-NODES slider controls the size of the network. The REWIRING-PROBABILITY determines the fraction of nodes rewired from their original neighbors. Choose a size and press SETUP. When you press HIGHLIGHT and click on a node in the graphics window it color-codes the nodes and edges. The node itself turns pink. Its neighbors and the edges connecting the node to those neighbors turn blue. Edges connecting the neighbors of the node to each other turn yellow. The amount of yellow between neighbors can gives you an indication of the clustering coefficient for that node. The NODE-PROPERTIES monitor displays the average path length and clustering coefficient of the highlighted node only. The AVERAGE-PATH-LENGTH and CLUSTERING-COEFFICIENT monitors display the values for the entire network. If a "network is disconnected" message appears in the command center, that means that the network got fragmented into two pieces and the network properties were not plotted during that round. We do not want to calculate and plot the average path length when the network is not one component. THINGS TO NOTICE ---------------- As the clustering coefficient lowers, the time it takes for a variant to saturate the community drops (more weak ties means faster change). Note that for certain values of the rewiring probability, the average path length decreases faster than the clustering coefficient. In fact, there is a range of values for which the average path length is much smaller than the clustering coefficient. Networks in that range are considered small worlds. NETLOGO FEATURES ---------------- Both nodes and edges are turtles. Edge turtles have the "line" shape. The edge turtle's SIZE variable is used to make the edge be the right length. Lists are used heavily in this model. Each node maintains a list of its neighboring nodes. Lists are also used in the procedure that calculates shortest paths and to find the clustering coefficient of a node. RELATED MODELS -------------- See other models in the Networks section of the Models Library, such as Giant Component and Preferential Attachment. CREDITS AND REFERENCES ---------------------- This model is adapted from: Wilensky, U. (2005). NetLogo Small Worlds Model. Duncan J. Watts, Six Degrees: The Science of a Connected Age (W.W. Norton & Company, New York, 2003), pages 83-100. The work described here was originally published in: DJ Watts and SH Strogatz. Collective dynamics of 'small-world' networks, Nature, 393:440-442 (1998) The small worlds idea was first made popular by Stanley Milgram's famous experiment (1967) which found that two random US citizens where on average connected by six acquaintances (giving rise to the popular "six degrees of separation" expression): Stanley Milgram. The Small World Problem, Psychology Today, 2: 60-67 (1967). @#$#@#$#@ default true 0 Polygon -7500403 true true 150 5 40 250 150 205 260 250 airplane true 0 Polygon -7500403 true true 150 0 135 15 120 60 120 105 15 165 15 195 120 180 135 240 105 270 120 285 150 270 180 285 210 270 165 240 180 180 285 195 285 165 180 105 180 60 165 15 arrow true 0 Polygon -7500403 true true 150 0 0 150 105 150 105 293 195 293 195 150 300 150 box false 0 Polygon -7500403 true true 150 285 285 225 285 75 150 135 Polygon -7500403 true true 150 135 15 75 150 15 285 75 Polygon -7500403 true true 15 75 15 225 150 285 150 135 Line -16777216 false 150 285 150 135 Line -16777216 false 150 135 15 75 Line -16777216 false 150 135 285 75 bug true 0 Circle -7500403 true true 96 182 108 Circle -7500403 true true 110 127 80 Circle -7500403 true true 110 75 80 Line -7500403 true 150 100 80 30 Line -7500403 true 150 100 220 30 butterfly true 0 Polygon -7500403 true true 150 165 209 199 225 225 225 255 195 270 165 255 150 240 Polygon -7500403 true true 150 165 89 198 75 225 75 255 105 270 135 255 150 240 Polygon -7500403 true true 139 148 100 105 55 90 25 90 10 105 10 135 25 180 40 195 85 194 139 163 Polygon -7500403 true true 162 150 200 105 245 90 275 90 290 105 290 135 275 180 260 195 215 195 162 165 Polygon -16777216 true false 150 255 135 225 120 150 135 120 150 105 165 120 180 150 165 225 Circle -16777216 true false 135 90 30 Line -16777216 false 150 105 195 60 Line -16777216 false 150 105 105 60 car false 0 Polygon -7500403 true true 300 180 279 164 261 144 240 135 226 132 213 106 203 84 185 63 159 50 135 50 75 60 0 150 0 165 0 225 300 225 300 180 Circle -16777216 true false 180 180 90 Circle -16777216 true false 30 180 90 Polygon -16777216 true false 162 80 132 78 134 135 209 135 194 105 189 96 180 89 Circle -7500403 true true 47 195 58 Circle -7500403 true true 195 195 58 circle false 0 Circle -7500403 true true 0 0 300 circle 2 false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 cow false 0 Polygon -7500403 true true 200 193 197 249 179 249 177 196 166 187 140 189 93 191 78 179 72 211 49 209 48 181 37 149 25 120 25 89 45 72 103 84 179 75 198 76 252 64 272 81 293 103 285 121 255 121 242 118 224 167 Polygon -7500403 true true 73 210 86 251 62 249 48 208 Polygon -7500403 true true 25 114 16 195 9 204 23 213 25 200 39 123 cylinder false 0 Circle -7500403 true true 0 0 300 dot false 0 Circle -7500403 true true 90 90 120 face happy false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 255 90 239 62 213 47 191 67 179 90 203 109 218 150 225 192 218 210 203 227 181 251 194 236 217 212 240 face neutral false 0 Circle -7500403 true true 8 7 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Rectangle -16777216 true false 60 195 240 225 face sad false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 168 90 184 62 210 47 232 67 244 90 220 109 205 150 198 192 205 210 220 227 242 251 229 236 206 212 183 fish false 0 Polygon -1 true false 44 131 21 87 15 86 0 120 15 150 0 180 13 214 20 212 45 166 Polygon -1 true false 135 195 119 235 95 218 76 210 46 204 60 165 Polygon -1 true false 75 45 83 77 71 103 86 114 166 78 135 60 Polygon -7500403 true true 30 136 151 77 226 81 280 119 292 146 292 160 287 170 270 195 195 210 151 212 30 166 Circle -16777216 true false 215 106 30 flag false 0 Rectangle -7500403 true true 60 15 75 300 Polygon -7500403 true true 90 150 270 90 90 30 Line -7500403 true 75 135 90 135 Line -7500403 true 75 45 90 45 flower false 0 Polygon -10899396 true false 135 120 165 165 180 210 180 240 150 300 165 300 195 240 195 195 165 135 Circle -7500403 true true 85 132 38 Circle -7500403 true true 130 147 38 Circle -7500403 true true 192 85 38 Circle -7500403 true true 85 40 38 Circle -7500403 true true 177 40 38 Circle -7500403 true true 177 132 38 Circle -7500403 true true 70 85 38 Circle -7500403 true true 130 25 38 Circle -7500403 true true 96 51 108 Circle -16777216 true false 113 68 74 Polygon -10899396 true false 189 233 219 188 249 173 279 188 234 218 Polygon -10899396 true false 180 255 150 210 105 210 75 240 135 240 house false 0 Rectangle -7500403 true true 45 120 255 285 Rectangle -16777216 true false 120 210 180 285 Polygon -7500403 true true 15 120 150 15 285 120 Line -16777216 false 30 120 270 120 leaf false 0 Polygon -7500403 true true 150 210 135 195 120 210 60 210 30 195 60 180 60 165 15 135 30 120 15 105 40 104 45 90 60 90 90 105 105 120 120 120 105 60 120 60 135 30 150 15 165 30 180 60 195 60 180 120 195 120 210 105 240 90 255 90 263 104 285 105 270 120 285 135 240 165 240 180 270 195 240 210 180 210 165 195 Polygon -7500403 true true 135 195 135 240 120 255 105 255 105 285 135 285 165 240 165 195 line true 0 Line -7500403 true 150 0 150 300 line-half true 0 Line -7500403 true 150 0 150 150 pentagon false 0 Polygon -7500403 true true 150 15 15 120 60 285 240 285 285 120 person false 0 Circle -7500403 true true 110 5 80 Polygon -7500403 true true 105 90 120 195 90 285 105 300 135 300 150 225 165 300 195 300 210 285 180 195 195 90 Rectangle -7500403 true true 127 79 172 94 Polygon -7500403 true true 195 90 240 150 225 180 165 105 Polygon -7500403 true true 105 90 60 150 75 180 135 105 plant false 0 Rectangle -7500403 true true 135 90 165 300 Polygon -7500403 true true 135 255 90 210 45 195 75 255 135 285 Polygon -7500403 true true 165 255 210 210 255 195 225 255 165 285 Polygon -7500403 true true 135 180 90 135 45 120 75 180 135 210 Polygon -7500403 true true 165 180 165 210 225 180 255 120 210 135 Polygon -7500403 true true 135 105 90 60 45 45 75 105 135 135 Polygon -7500403 true true 165 105 165 135 225 105 255 45 210 60 Polygon -7500403 true true 135 90 120 45 150 15 180 45 165 90 square false 0 Rectangle -7500403 true true 30 30 270 270 square 2 false 0 Rectangle -7500403 true true 30 30 270 270 Rectangle -16777216 true false 60 60 240 240 star false 0 Polygon -7500403 true true 151 1 185 108 298 108 207 175 242 282 151 216 59 282 94 175 3 108 116 108 target false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 Circle -7500403 true true 60 60 180 Circle -16777216 true false 90 90 120 Circle -7500403 true true 120 120 60 tree false 0 Circle -7500403 true true 118 3 94 Rectangle -6459832 true false 120 195 180 300 Circle -7500403 true true 65 21 108 Circle -7500403 true true 116 41 127 Circle -7500403 true true 45 90 120 Circle -7500403 true true 104 74 152 triangle false 0 Polygon -7500403 true true 150 30 15 255 285 255 triangle 2 false 0 Polygon -7500403 true true 150 30 15 255 285 255 Polygon -16777216 true false 151 99 225 223 75 224 truck false 0 Rectangle -7500403 true true 4 45 195 187 Polygon -7500403 true true 296 193 296 150 259 134 244 104 208 104 207 194 Rectangle -1 true false 195 60 195 105 Polygon -16777216 true false 238 112 252 141 219 141 218 112 Circle -16777216 true false 234 174 42 Rectangle -7500403 true true 181 185 214 194 Circle -16777216 true false 144 174 42 Circle -16777216 true false 24 174 42 Circle -7500403 false true 24 174 42 Circle -7500403 false true 144 174 42 Circle -7500403 false true 234 174 42 turtle true 0 Polygon -10899396 true false 215 204 240 233 246 254 228 266 215 252 193 210 Polygon -10899396 true false 195 90 225 75 245 75 260 89 269 108 261 124 240 105 225 105 210 105 Polygon -10899396 true false 105 90 75 75 55 75 40 89 31 108 39 124 60 105 75 105 90 105 Polygon -10899396 true false 132 85 134 64 107 51 108 17 150 2 192 18 192 52 169 65 172 87 Polygon -10899396 true false 85 204 60 233 54 254 72 266 85 252 107 210 Polygon -7500403 true true 119 75 179 75 209 101 224 135 220 225 175 261 128 261 81 224 74 135 88 99 wheel false 0 Circle -7500403 true true 3 3 294 Circle -16777216 true false 30 30 240 Line -7500403 true 150 285 150 15 Line -7500403 true 15 150 285 150 Circle -7500403 true true 120 120 60 Line -7500403 true 216 40 79 269 Line -7500403 true 40 84 269 221 Line -7500403 true 40 216 269 79 Line -7500403 true 84 40 221 269 x false 0 Polygon -7500403 true true 270 75 225 30 30 225 75 270 Polygon -7500403 true true 30 75 75 30 270 225 225 270 @#$#@#$#@ NetLogo 3.0 @#$#@#$#@ @#$#@#$#@ @#$#@#$#@ setup spread-change not (any? nodes with [has-change? = false]) clustering-coefficient time @#$#@#$#@