men are dogs (and women too)

ian horswill departments of eecs and radio/television/film northwestern university

ian@northwestern.edu

I used to work on robots

but I find human behavior vexing

interactive characters

 Strangely, nobody wants a passive-aggressive robot with Oedipal conflicts

 But it's okay for dramatic characters to be screwed up

 So they're a nice domain for modeling personality

Mateas and Stern, Façade (2006)

toward human-level AI

dysfunction toward human-level

claim

 The human nervous system is a refinement of the mammalian nervous system

 So we should use mammalian neurophysiology and behavior as a starting point for character architectures

folk psychology

```
human = animal + x
x ∈ { rationality, language, thought, cognition, tools, soul, culture, ... }
x is where the action is
```

"Man [sic] is the rational animal."

so if animals are something like ...

... then humans are something vaguely like

folk agent architecture

- Most agent architectures in use today are tiered
 - Details vary
 - Something Al-complete on top
 - Network of parallel sensorymotor systems on bottom
- "X-centric"
 - Most behavior starts with goals in a centralized cognitive system
 - Sensory-motor systems mostly do what they're told to do by higher levels

folk agent architecture

```
human = animal + X
```

folk agent architecture

```
human = animal + **
```

centralization

- High level systems like planners are generally Turing-complete programming languages
 - A lot of "animal" functionality gets implemented in the central system
 - Fight, flight, feeding, and reproduction
 - Emotion
 - Those functions no longer have special architectural status
- Good from an engineering perspective
- Arguably bad for character simulation
- The difference between McCoy and Spock
 - Isn't that Spock has self-control and McCoy doesn't
 - Even though that's the whole point of their characters
 - It's that they have different knowledge-bases

so now we have something vaguely like

and yet in faculty meetings we sometimes seem more like ...

[in your heart, you know I'm right]

people are mammals

- Humans are social mammals
 - Affiliate into groups, tribes, etc.
 - Attachment and child rearing
 - Territoriality
 - Dominance hierarchies

- We have largely the same brain structure as other mammals
 - Just "better" somehow
 - But all the old stuff is still running
 - And (somehow)
 influencing/being
 influenced by the new stuff

men are dogs (women too)

- Claim: humans are effectively dogs with large forebrains
- Dogs have much of the same bonding, affiliation, and dominance behaviors humans have
 - That's what matters most in characters anyway
- So we don't want to just understand how the forebrain part works
 - We also want to understand how the dog part works
 - And how it interoperates with higher-level cognition

project

- Implement mammalian social behaviors
 - Including simple communication
- Use them to create interesting characters
- See how far you can take it

what do we need to add to get human-level AI?

- Probably something
 - Humans aren't literally dogs with large forebrains
 - Probably some architectural changes
- But maybe not a lot
 - There's no sign of a LISP machine having been added between chimps and humans
- The mammalian brain has
 - A largish memory
 - A finite-state controller
- That's already most of what you need to be Turing-complete (if not Al-complete)

attachment

- Attachment is the drive to maintain proximity (accessibility) to a caregiver
- Psychoanalysis and behaviorism: attachment as a secondary drive
 - Child wants food
 - Parent gives food
 - Child wants parent
- Bowlby showed that children
 - Attach to parents even when they're abusive
 - Even in preference to surrogate caregivers who treat them better
- So he went off and read ethology, cybernetics, and cognitive science

attachment behavior system

 Bowlby argued there's an innate attachment behavior system

 Up and running long before language and planning

attachment is a very old system

- Most mammalian species show some kind of bond between caregivers and young
- Lorenz's work on imprinting was (presumably) one of the primary inspirations for Bobby's work

attachment is a very old system

Non-human Primate infants behave almost identically to human infants in most attachment experiments

attachment and cognitive development

- Children need their caregivers to be accessible
- But accessibility becomes increasing abstract over time
 - Physical proximity
 - Line of sights eye contact
 - Negotiated reunions
 - Feelings talk

here's why attachment is so interesting

- It doesn't behave like a sensorymotor primitive
 - Acts semi-autonomously
 - Can task "x"
 - Can be influenced by "x"
- Doesn't behave like "x" either
 - Comes in much earlier than "x", both ontogenetically, and phylogenetically
 - And really does behave like an innate sensory-motor behavior during the first year of like
- Argues for a (somewhat?) different kind of functional decomposition
- (Not that I know what that decomposition is)

attachment persists into adulthood

- Attachment behavior system continues into adulthood
- People don't stop being attached to their parents
- ABS is thought to underlie adult romantic relationships
- Adult attachment style is a predictor of stalking behavior

partial implementation

Simulates "safe home base" behavior (Ainsworth)

- Simple ragdoll physics simulation
- Straightforward behavior-based control
- No higher-level cognitive component (yet)

attention and appraisal

- Characters continually reappraise objects in view and in STM
 - Valence
 - Monitoring priority
- Valence modulated by anxiety
 - Anxious: accentuate negative appraisals
 - Secure: accentuates positive appraisals
- Focus of attention shifts to highest salience object

monitoring and gaze

- Gaze shifts regularly to monitor environment
- Mostly follows
 - Focus of attention
 - Target of current approach behavior

- But also periodically checks objects with high monitoring priority
 - Caregiver
 - Threats

security and anxiety

 Anxiety is inverse security (not a definitional claim; that's just how the code works now)

- Security increases with
 - Proximity to caregiver
 - Line of sight to caregiver
 - Eye contact with caregiver
 - Physical contact with caregiver

attachment

- Activated when security drops below threshold
- Remains active until security rises above another threshold
- Engages
 - Approach to caregiver
 - Reach
 - Hug

let us pray to the demo gods that they might smile kindly on us

demo + questions

related work

- EU Felix Growing project (Cañamero et al. 2007)
 Wide range of work, including modeling on robots (c.f. Lola's talk yesterday)
- Petters (2006)
 Developed computational models that could explain child attachment style in terms of parental caregiving style
- Likhachev and Arkin (2000)
 Use of safe-home-base phenomenon for controlling robot mapping and exploration