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Abstract. We describe a uniform technique for representing both sensory data and the attentional state
of an agent using a subset of modal logic with indexicals. The resulting representation maps naturally
into feed-forward parallel networks or can be implemented on stock hardware using bit-mask instructions.
The representation has \circuit-semantics" [34, 32], but can e�ciently represent propositions containing
modals, unary predicates, and functions. We describe an example using Kludge, a vision-based mobile
robot programmed to perform simple natural language instructions involving fetching and following tasks.

1. Introduction

Suppose you want to program a robot to ac-
cept simple instructions like \bring the green ball
here." A likely plan for solving this task might be:

1. Search for a green ball and track it visually as
the ball and/or robot move

2. Drive to the ball
3. Grab the ball
4. Drive to the starting position
5. Release the ball

Executing such a plan robustly requires the robot
to perform error detection and recovery. If the ball
slips out of the gripper during transit, the robot
needs to detect the situation and rerun steps 2
and 3. Unfortunately, the plan doesn't say that
the ball needs to stay in the gripper, just that the
robot should perform a grasp at a certain point in
the plan.
This paper addresses two problems in au-

tonomous agency. The �rst is the problem of mak-

ing mundane inference and problem solving pro-
cesses, such as determining how to deliver a ball,
run fast enough that they are e�ectively instan-
taneous. If the problem solver runs fast enough,
then error detection and recovery are easy: we just
keep rerunning the problem solver from scratch.
The second problem is grounding the problem
solver's inferences in continually updated sensor
information so that decisions about what to do
next change in real time as sensor readings change.

I will argue that these two problems are related.
I will present an architecture that allows a use-
ful subset of modal logic to be compiled into fast
feed-forward networks. The networks both drive
and are driven by a modern active vision system
on a real mobile robot (�gure 1). The architec-
ture allows designers to build systems with the
performance characteristics of behavior-based sys-
tems [28], while simultaneously providing much of
the generativity of traditional symbolic problem
solvers.
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1.1. Agent architectures

Much of the work in this decade on agent archi-
tectures has been concerned with the problem of
merging the strengths of reactive and deliberative
systems (see for example, [18, 17]).1 A pure re-
active system contains no internal state (mem-
ory) and consists of a set of task-speci�c, pre-
programmed rules for �ring actions based on im-
mediate sensory input. The rules are typically
implemented using some kind of parallel network
whose inputs are driven by sensors and whose out-
puts drive the e�ectors. Purely deliberative sys-
tems (planners) compute in advance, and commit
to, a complete series of actions intended to achieve
the goal. The series of actions (the plan) is typi-
cally computed from the goal using a combination
of search and simulation.

Both approaches have obvious aws. It is easy
to construct examples of non-Markovian environ-
ments in which a reactive system's lack of internal
state will get it into trouble. The task-speci�city
of their rules also raises questions about scaling
and generativity. On the other side, deliberative
systems typically require exponential search, mak-
ing them slow for simple problems and unusable
for complex ones. Another issue is that purely
deliberative systems commit to a plan in its en-

Fig. 1. Kludge the robot during a delivery task. Its job is
to search for, approach, and grasp a ball of speci�ed color
and to deliver it to a person wearing a speci�ed color or to
a designated point in space. It must quickly recover from
problems such as the ball slipping out of its mandibles or
the ball being momentarily occluded.

tirety. The only way they can respond to un-
expected contingencies is for the plan to fail en-
tirely, triggering a restart of the planner. How-
ever, it can be di�cult for the executive running
the plan to know how to judge when the plan has
failed, since the plan contains only the actions to
perform, not their rationale. In a simple plan-
ner/executive architecture, all the domain knowl-
edge is in the planner, but understanding whether
a plan has failed requires at least as much knowl-
edge as formulating it in the �rst place.

Clearly, one wants a system that combines the
strengths of reactive and deliberative systems.
The most common approach to this has been to
build a hybrid system incorporating reactive and
deliberative systems as components, typically in
a three-tiered architecture: a planner computes
plans from goals, an executive sequences them,
and a set of reactive systems implement the low
level symbolic actions (see [3] for an extensive sur-
vey). One common argument for such an architec-
ture is that deliberation will always be slower than
reaction, so any division of labor between the two
will have to allocate fast time-scale activities to
the reactive system and slower time-scale activi-
ties to deliberative systems [5].

The other major approach is to select special
cases of planning that can be mapped e�ciently
into parallel hardware. The networks then com-
pute the same input/output mapping as a planner,
but run in bounded time. The earliest example of
this is Rosenschein and Kaelbling's system, which
compiles propositional logic axioms into sequen-
tial circuits [34]. Kaelbling's GAPPS system [23]
used goal regression to compile a (propositional)
planner-like formalism into sequential circuits.
Mataric implemented a Dijkstra-like shortest path
�nder using spreading activation in a behavior-
based system [29]. Maes' behavior network sys-
tem computed an approximation to propositional
STRIPS planning using spreading activation [27].

The use of propositional logic (logic with-
out variables or predicate/argument structure) is
severely limiting, however, and there have been
a few attempts to rectify it. Nilsson's TRT sys-
tem [32] handles predicate/argument structure by
incrementally growing a propositional network as
new combinations of arguments are encountered.
Agre and Chapman's deictic representation [2, 1]
is an explicit attempt to overcome the limitations
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of propositional representations in which variable
binding is performed in the perceptual system
rather than the reasoning system.

1.2. Representation languages, complexity, and

parallelizability

The problem with hybrid systems is complex-
ity. Technically, planning isn't slow, it's complex.
Planning systems typically take exponential time
to compute their plans. If we imagine a plan-
ner that takes time exponential in the length of
the completed plan, then while it might take 100
seconds to compute a 30 step plan, 3 seconds to
compute a 25 step plan, and 3 microseconds to
compute a 5 step plan, it would take 28 hours to
compute a 40 step plan.2

The complexity problems of the parallel hybrids
have more to do with hardware than time. Ulti-
mately, the problem with the parallel hybrids is
that they have no way of doing variable binding
and so they are e�ectively limited to representa-
tions that are isomorphic to propositional logic
rather than predicate (e.g. �rst order) logic. That
means that instead of having a single node in the
system that represents on(A;B), they need to use
separate nodes for each possible value of A and
B. In the case of Maes' solution for the blocks
world [27], that ends up meaning O(n3) nodes in
the system and O(n4) wires connecting them. In
Hasegawa et al.'s dialog system [16], a separate
node is used for every possible sentence that can
be make by either speaker.

There is a deep relationship between the ex-
pressiveness of a representation language and the
computational complexity of its inference prob-
lem (see, for example, [24]). Propositional infer-
ence is quite tractable but so limited that one
is forced to do things like represent all ground-
instances of on(A;B) separately. On the other
hand, inference in �rst-order predicate logic is
Turing-complete and so wildly intractable. If
we remove certain features like term expressions
from the language (so we can say related(X;Y )
but not related(brother(X); X)), we get the lan-
guage DATALOG, whose inference problem is P-
complete [37], meaning it is tractable, but so far
as we know, unparallelizable.

In fact, parallelizing inference is extremely di�-
cult. Even simple problems like uni�cation, which
are ubiquitous in AI systems, are P-complete and
so thought to be inherently serial [10].

1.3. Perception systems

Contemporary active sensing systems typically
have attentional components that must be con-
trolled appropriately for the current task. For ex-
ample, many active vision systems have the abil-
ity to track a small number of objects (typically
one) [22, 8, 15, 13, 9, 26, 21]. Attentive track-
ing is necessary because it is impractical to com-
pletely analyze a stream of images | �nd and
label all objects in each image, then match the
identities of the objects between images | which
would amount to tracking every possible object
at once. Instead, tracking systems \latch on" to
a small number of objects and continuously re-
port their characteristics over time. For exam-
ple, a disparity-based tracker such as [8] reports
the image-plane coordinates of the object being
tracked, as well as its disparity (a measure of dis-
tance). Trackers generally provide some way of
initially choosing an object based on its visual
properties [33, 20].

Control of modern perceptual systems therefore
involves dynamic allocation of scarce sensory re-
sources to task-relevant objects. To know the dis-
tance of an object, the system must �rst allocate
a tracker to the object. Unfortunately, current
reasoning systems have no way of directing these
resources. They require all knowledge to be pre-
stored in a symbolic database. This leaves the per-
ceptual system in the position of having to guess
what information might be useful to the reasoner.

Allocating perceptual resources intelligently re-
quires that the agent have at least limited ability
to represent its own attentional state and to rea-
son about that state's relation to its present goals.
This requires care, however, since the allocation of
attention cannot depend on gathering information
that would itself require allocating attention (on
penalty of in�nite regress).

In practice, symbolic architectures typically
treat the allocation of a tracker or the checking of
its output as a discrete action that is generated by
the problem solver based on ad-hoc rules. In addi-
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tion to being an added burden on the programmer,
such rules leave open the possibility that the prob-
lem solver will forget to check something. Thus
robots that perform delivery tasks such as our ball
delivery task either have speci�c hand-coded rules
to regularly check if the ball has fallen out of the
gripper or do not check at all.

In theory, one could imagine driving a con-
ventional serial reasoner with perceptual input
by interfacing the perceptual system to the sym-
bolic database so that the outputs of the percep-
tual systems are something like �rst-order logic
assertions expressed as tree-like data structures.
It is di�cult to imagine how to do this in a
domain-independent manner, however, since the
perception system needs to know what informa-
tion is relevant to the current task. Another is-
sue is how to inform the reasoner about changes
in the environment. A planner that is deep in a
non-deterministic search may need to completely
restart the search when the environment changes.
Determining whether a given change is relevant
and requires a restart of the search process is not
an inviting problem. Another possibility is to
build a perceptual system that emulates the sym-
bolic database [20]. While useful, this approach
still leaves open the problem of tracking environ-
mental changes and updating stale inferences.

By far, the simplest way to ground an infer-
ence process is to choose a representation language
whose inference rules can be compiled into parallel
networks and then drive the inputs of those net-
works with the outputs of the perceptual system.
Then the outputs of the inference rules will follow
the perceptual system as its state changes. The is-
sue, then, is to �nd the most useful representation
language for which we can do this.

2. Role passing

We have developed a set of techniques for im-
plementing limited inference and variable bind-
ing in otherwise behavior-based architectures. We
call the class of architectures they encourage \role
passing" architectures for reasons that should be
clear in a moment. Role passing allows the use of
more expressive representation languages without

sacri�cing parallelizability or the ability to ground
inference in sensor data.
A role-passing system is composed of four basic

types of components:

� A set of traditional sensory-motor behaviors,
as in subsumption [6] or the Schema system
[3].

� A set of specialized short-term memory sys-
tems. Each STM provides a way of represent-
ing a speci�c type of information about ob-
jects in the world. Internally, an STM is com-
posed of a �xed pool of representations that
can be allocated to hold information about a
given object. Allocated representations are
tagged with a speci�c tag (see below) that is
used when looking up information about the
object being represented. Once allocated and
tagged, the representation is said to be bound
to that tag. The set of possible tags is �xed in
advance and is assumed to be relatively small.

� A set of access ports between behaviors and
STMs. When a behavior drives the input of
an access port with a tag, the STM drives the
port's output with the data from the repre-
sentation bound to that tag.

� An interference network that receives data
from the STMs, performs deductions using
it, and generates control signals to drive the
behaviors and STMs. This will be discussed
more fully in section 3.

As with any parallel reactive system, these compo-
nents should be thought of as pieces of hardware
that continually recompute their outputs based on
their current inputs, although in practice all our
implementations run on standard serial comput-
ers.
Most of the communication within a role-

passing system consists of passing tags from one
system to another. When a behavior requires an
object as a parameter, that object is speci�ed by
its tag. The behavior routes the tag to the appro-
priate access port and receives the data it needs
about the object from the port's STM.
The term \short-term memory" is somewhat

misleading, since it implies a passive information
store. Our use here is broader, however. In partic-
ular, we will group attentive perceptual systems,
such as visual object trackers, into STMs. Such a
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collection of trackers is a memory insofar as it re-
members to what objects the system is attending,
and to what tags those objects are bound. It is,
however, an \active" memory in the sense that it
continually updates its own representations.
Our current implementation (see section 4),

uses three STMs:

� A visual tracking system that can search for
and track the positions of a set of designated
objects. The system is composed of a set of in-
dividual trackers (3, in our implementation).
Other components in the system can request
that an object be tracked by specifying a color
to search for and a tag to bind it to. The
tracking system will then allocate a tracker to
it, bind the tracker to the speci�ed tag, and
set it searching for the speci�ed color.

� An odometric tracking system that can dead-
reckon the positions of places the robot has
been before. Other components can request
that places be remembered by providing a tag
to which to bind the place representation.

� A description bu�er that stores information
about the appearances of di�erent objects.
The present implementation stores statistics
about the colors on an object's surface (e.g.
mean RGB value, variances, etc). The de-
scriptions can be used as input to the track-
ing system to initiate a search for an object
with the speci�ed statistics. Descriptions are
bound by providing a set of statistics and a
tag value to which to bind them. Unlike the
other two STMs, the description bu�er really
is a passive information store.

Each of these STMs can potentially hold informa-
tion about several objects. A given object can be
represented in any, all, or none, of the STMs at a
given time. Although we will focus on these three
examples, many other types of STMs are possi-
ble. For example, Matari�c's active map represen-
tation [29] could be considered an STM in our
sense, as could marker-passing knowledge bases
such as NETL [12].
The most speculative aspect of the architecture

is the choice of tags. In role-passing systems, we
have used linguistic role names (e.g. AGENT, PA-
TIENT, SOURCE, DESTINATION) as tags. In
other words, we assume that linguistic role names

(and perhaps other features) are the keys by which
short term memory is accessed. This may or may
not be a good policy in the long run, but it has
been useful so far. In any case, it is independent of
the other architectural decisions, such as the use of
tagging in general or the decision to break short-
term memory up into specialized subsystems.

We can now sketch the solution of the delivery
problem using role-passing. We bind the color of
the object we want to deliver to the role PATIENT
in the description bu�er. We also bind our cur-
rent location to the role DESTINATION in the
odometric tracking system. We use an inference
network that implements the following rules:

� Assert goal(in-hand(PATIENT))
� If in-hand(PATIENT),

then assert goal(near(DEST))
� If in-hand(PATIENT) and near(DEST), then

done
� If goal(in-hand(X)) and not(in-hand(X)),

then assert goal(near(X))
� If goal(in-hand(X)) and not(in-hand(X)) and

near(X), then activate the GRAB behavior
with X as its argument

� If goal(near(X)),
then assert goal(know(distance(X)))
and goal(know(direction(X)))

� If goal(near(X)) and know(distance(X)) and
know(direction(X)), then activate the DRIV-
ETO behavior with the argument X.

� If goal(know(distance(X)))
and not(know(distance(X)))
and know(description(X)), then activate the
visual search system with an argument of X.

and run the rules continuously and in parallel. At
any given moment, the robot will drive to the des-
tination i� current sensor data indicates that the
ball is in the gripper. Similarly, it will attempt
to acquire the ball i� sensor data indicates it is
not in the gripper. Like parallel reactive systems,
the robot will recover automatically from losing
the ball. However, we can change the object it
delivers or the destination it takes it to just by
changing the initial role bindings. We do not have
to duplicate rules or behaviors for each possible
ball.
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3. Grounding inference

Given the basic role-passing architecture, we can
implement an inference network that supports
limited forms of variable binding by treating roles
as bound variables. Alternatively, we can think
of roles as names with indexical reference. Since
role names typically have functional signi�cance
(e.g. something bound to DESTINATION must
be a place to which something can, has, or wants
to go), role-passing can be thought of as a kind of
indexical-functional (deictic) representation [2, 1].

3.1. Representing functions, predicates, and in-

dividuals

Peripheral systems, such as the behaviors and
STMs are free to use whatever internal represen-
tations are convenient (images, sonar data, grid-
based representations of space, etc.). However the
inference network only uses three representations:
short term memory keys (roles/tags), unary pred-
icates, and scalar functions.

Predicates are represented by giving their values
on every object bound in the system. Since there
are only a �nite number of roles, we can represent
the value of a predicate as a bit-vector in which
the ith bit being set means that the the predicate
is true of the object bound to the ith role:

predicate source dest patient agent
near T F F T
see F T T F

As a slight abuse of terminology, we will call this
the extension of the predicate. For convenience
sake, we will use the same representation for roles
when they are used as short-term memory keys:
to refer to the object bound to the ith role, we
use the bit-vector with only the ith bit set.

We can use a similar representation for real-
valued functions over objects. A function is rep-
resented as a vector of numbers in which the ith
value of the vector is the value of the function on
the object bound to the ith role:

function source dest patient agent
distance 15 0 0 17
direction 14 87 35 -28

Since we can represent predicates and functions as
small vectors, we can e�ciently implement them
on both von Neumann and parallel hardware. On
von Neumann hardware, a function is a standard
vector of memory cells and a predicate can be rep-
resented as a single memory word. Moreover, we
can compute logical connectives with single ma-
chine instructions. A compound expression like:

P (x) ^ (Q(x) _W (x))

can be evaluated by the code:

(logand p (logior q w))

(or p&(q|v) in C). The expression computes the
bit-vector of the individuals for which the subex-
pression P (x) ^ (Q(x) _ W (x)) holds (assuming
p, q, and w hold the bit-masks for P , Q, and W ,
respectively).
The representation is also conveniently imple-

mented in a feed-forward network. Each predicate
or function is implemented as a compact bus of
wires holding the symbol's value for each index-
ical. Logical connectives are again implemented
as bit-wise logic operations, but this time by con-
structing separate gates.
Thus, by limiting our representation to a small

set of indexical names, and by limiting ourselves
to single-place predicates and function symbols,
we can e�ciently represent logical expressions as
fairly compact dependency networks. These net-
works are easily parallelized and easily updated in
real-time.

3.2. Representing propositional attitudes

Thus far, we have no way of representing the dis-
tinction between near(destination) being false,
and near(destination) being unknown. The dis-
tinction is critical for reasoning about attention.
The problem is easily solved by keeping a vec-

tor of valid bits in parallel with the truth bits of
predicates and values of functions. Within the
framework of logic, these valid bits are naturally
interpreted as assertions about the agent's state
of knowledge: if the truth bits encode the propo-
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sition P (x), then the valid bits encode the propo-
sition \know-whether P (x)", which we will write
4(P (x)):

4(P (x)) � K(P (x)) _K(:P (x))

4(f(x)) � 9y:K(f(x) = y)

Since we ultimately want to build a problem
solver, it is also useful to add a \goal" modal-
ity, so that we can express that P (x) is a goal or
even that 4(P (x)) is a goal. Thus the real rep-
resentation of predicates is not just a bit-vector,
but four bit-vectors: the predicate's extension,
its valid bits, its goal bits, and its knowledge-
goal bits. Functions are three bit-vectors and a
scalar vector because functions are scalar-valued,
not truth valued.

3.3. Derived functions and predicates

We can now de�ne functions and predicates in
terms of other functions and predicates. Given
an axiom of the form

8x:P (x) � �(Q1(x); :::; Qn(x))

we can generate hardware or machine code to com-
pute P from Qi as described in section 3.1. We
can also generate the axiom

8x:4(Q1(x)) ^ ::: ^4(Qn(x)))4(P (x))

which, again, is easily implemented as a bit-vector
operation, this time on the valid bits.
At the cost of extra complexity, we can make

this axiom stronger, at least for the standard log-
ical connectives. For example, if we have that

8x:P (x) � Q(x) ^W (x)

then we have that

8x:4(P (x)) �

(4(Q(x)) ^4(W (x))) _K(:Q(x)) _K(:W (x))

Goals are a more complicated manner. If we
de�ne P (x) as Q1(x) ^ ::: ^ Qn(x), then we may
often want to include the axioms:

8x:goal(P (x))) goal(Q1(x)) ^ ::: ^ goal(Qn(x))

8x:goal(4(P (x)))

) goal(4(Q1(x))) ^ ::: ^ goal(4(Qn(x)))

However, this can get us into trouble, since it
may be important to solve one subgoal before the
other. Thus while these axioms are useful de-
faults, they are not universally true. In our im-
plementation, we allow conjunctions to solve their
subgoals either in parallel, as above, or serially
(see section 4).

3.4. Grounding primitive percepts

In order for our predicate/function representation
to be useful, the perceptual systems must be able
to generate it themselves. Fortunately, this is easy
to do.

Recall that we have grouped perceptual systems
together into STMs. Each STM contains a homo-
geneous pool of perceptual systems, such as visual
object trackers or odometric trackers, or passive
representations such as color descriptions. Each
STM allocates perceptual systems (trackers, in
this case) on demand and keeps track of the roles
to which they are bound. The perceptual systems,
for their part, measure various functions and pred-
icates. For example, the visual object trackers
might measure the predicate is-moving and the
functions distance and direction. The STM can
compute the complete extension of a predicate,
such as is-moving, by forming a bit-vector of all
the role tags of all the trackers that are reporting
motion. It can compute the valid bits by forming
a bit-vector of all the roles to which any tracker is
bound.

In general, for an STM comprised of percep-
tual systems T1; :::; Tl, each of which measures a
set of predicates P1; :::; Pm, and a set of functions
f1; :::; fn), we can compute the extension and valid
bits of Pi or fi as:

ext(Pi) =
_

fjjP (Tj )g

role(Tj) (1)

ext(4(Pi)) =
_
j

role(Tj) (2)
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fi(r) =

�
f(Tj); r 2 role(Tj)
unde�ned; r not bound

(3)

ext(4(fj)) =
_
j

role(Tj) (4)

where, Pi(Tj) is Tj 's measurement of Pi, fi(Tj) is
Tj 's measurement of fi, ext(Pi), Pi's measured ex-
tension, is the bit-vector of roles for which Pi's has
been measured by some Tj to be true, ext(4(Pi))
is the bit-vector of roles for which Pi's value has
been measured (be it true or false), and role(Tj)
is the the role (in bit-vector format) to which Tj
is bound. Passive STMs, such as the description
bu�er, report their data to the inference network
in the same way.

3.5. Specifying arguments to behaviors

Behaviors, such as the DRIVETO behavior, take
as arguments objects in the world. Ultimately,
DRIVETO has to obtain direction and distance
information about the object from either a vi-
sual tracker bound to the object or an odomet-
ric tracker bound to it. It gets this information
through its access ports to the visual tracking
STM and the odometric tracking STM. It drives
the role input of the port with the bit-vector rep-
resenting X. The access port compares it to the
bindings of each tracker in the STM and drives
the output of the port with the distance and di-
rection signals of the matching tracker (see �gure
2).3 DRIVETO then uses whatever distance and
direction data is presented on the output of the
port to steer the robot appropriately.
Our delivery control system included the rule

� If goal(near(X)) ^ 4(distance(X)) ^
4(direction(X)), then activate the DRIVETO
behavior with the argument X .

which we can implement by computing the com-
pound predicate D, given by

D(x) �

goal(near(x)) ^4distance(x) ^4direction(x)

and routing its extension to the argument input of
DRIVETO. Whenever D has a non-null extension
and one of the trackers has a binding for one of
the objects in its extension, then the tracker will

drive the output of DRIVETO's access port with
that object's direction and distance information,
causing the robot to drive toward it.
An important question is how to resolve con-

icts when D's extension has many objects. Thus
far, we have dealt with the problem by writing the
control rules so it can't happen.

3.6. Equality

Sometimes, it is useful to be able to assert that
two roles co-refer. For example, equality asser-
tions could be used to implement an alternative
form of parameter passing. Rather than DRIV-
ETO taking a tag as an input, DRIVETO could
be designed to drive to any object bound to the
role TARGET. DRIVETO could then be \called"
on some other object, such as PATIENT, by as-
serting the equality TARGET=PATIENT.
In the general case, there are n2 possible as-

sertions of equality between n roles. The current
set of equality assertions can be represented as an
n�n matrix E in which Eij is true i� i and j are
asserted to be equal. Given the matrix, we can
map a set of names n to the set of names, nE ,
equivalent to it, by performing a matrix multipli-
cation:

nE = (I+E)n

Thus we can assert that two names ni and nj co-
refer by asserting the entries Eij and Eji in the
matrix.
In the general case, we must �rst compute the

transitive closure of the asserted equalities. Tran-
sitive closure can be computed iteratively by re-
peated matrix multiplication. Alternatively, if we
can place an ordering on the names such that
equality assertions are only made between names
adjacent in the ordering, then E will be in block
diagonal form and we can compute the mapping
directly as:

nE = (I+E1)(I+E2):::(I+Em)n

where the E1 are the blocks of E.
One of the advantages of this scheme is that the

matrix multiplications need only be performed in
the STMs. Each tracker (or other representation)
multiplies the set of roles to which it is bound by
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Fig. 2. Access ports. Each object representation (tracker, description, etc.) stores the set of roles to which it is bound in
a role latch. When a behavior is activated, its argument is speci�ed by driving the role bus with the argument's role. The
tracker whose role latch matches the role bus then drives the output bus with its data.

I+E to obtain the set of roles equivalent to the
ones to which its bound, then uses those roles in
driving the predicate and function busses. Thus,
we modify eqs. 1 as follows:

ext(Pi) =
_

fjjP (Tj )g

(I+E)role(Tj)

ext(4(Pi)) =
_
j

(I+E)role(Tj)

fi(r) =

�
f(Tj); r 2 (I+E)role(Tj)
unde�ned; r not bound

ext(4(fj)) =
_
j

(I+E)role(Tj)

The derived predicates and functions will then be
closed under the current set of equality assertions.
This lets us avoid computing equality separately
at each predicate or function. For t trackers and n
roles, the scheme then requires O(tn2) hardware,
or, provided the roles �t in a single machine word,
O(tn) time on a von Neumann machine.

4. Implementation

We have implemented role-passing on a vision-
based mobile robot called Kludge (see �gure 1).
Kludge is built from a shortened RWI B14 enclo-

sure with an MIT/DIdeas Cheap Vision Machine
serving as its main computer (see �gure 1). The
CVM is a 25MIP oating-point DSP with 1MB of
RAM and a memory-mapped frame grabber. The
CVM can perform a wide range of real-time vi-
sion operations and consumes only 5-10W. Kludge
is also equipped with a pair of servo-controlled
mandibles suitable for grasping a set of balls. Its
visual and motor capabilities allow it to �nd and
grab balls, bring them to people, or follow people,
given knowledge of the color of their clothing. It
is also used to play games with children.

Kludge implements the visual tracking STM,
the odometric tracking STM, and the descrip-
tion bu�er discussed above. Its control rules im-
plement a range of fetching and following tasks,
which we describe below. The rules are ex-
pressed in a language called microdoer, which is
similar in spirit to MICROPLANNER or Prolog.
The microdoer interpreter simulates the simulated
feed-forward network inference network described
above and calls the appropriate routines for up-
dating behaviors and perceptual routines. On ev-
ery cycle of its main control loop, it acquires a
new image, runs the vision system and other sen-
sor systems, updates the sensory outputs, reeval-
uates all the nodes in the inference network, and,
�nally, runs the behaviors.
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Table 1. Roles in the delivery task.
Role Meaning
Patient The ball to be delivered
Source Starting location of the robot
Destination Person or place to which to deliver the

object

(define-STM-boundp-node have-description description-STM #f)

(define-STM-boundp-node see tracker-STM have-description)

(define-STM-output-node distance tracker-distance tracker-STM see)

(define-STM-output-node image-x-coordinate tracker-x tracker-STM see)

(define-threshold-node visually-near < distance 13)

(define-threshold-node inhand < distance 3)

(define-test-node visually-facing image-x-coordinate centered?)

(define-STM-predicate odometrically-facing

odometer-STM odometrically-facing? #f)

(define-STM-predicate odometrically-near

odometer-STM odometrically-near? #f)

(define-STM-boundp-node odometrically-tracking odometer-STM #f)

Fig. 3. Sensory predicates and functions in Kludge.

The microdoer interpreter itself runs under a
simple Scheme interpreter written in C. Kludge's
vision code is written in C and is called from
Scheme. The vision system allows it to search for
and track several objects simultaneously. Search
and tracking are based on color. The vision sys-
tem can also perform real-time collision avoidance
using the Polly algorithm [19]. Since the Micro-
doer interpreter is running on a low performance
interpreted lisp, it is much slower than it ought
to be. The set of rules given here take approxi-
mately 50ms to update on each clock cycle. Since
the vision system and the generation of debugging
output also each take around 50ms, the frame rate
of the system varies between 7Hz and 10Hz de-
pending on the amount of debugging output being
generated.

The various STMs compute 13 predicates and
functions (see �gure 3). Most are either boundp

predicates (true i� a given STM binds a given
role), outputs (real-valued functions), or thresh-

olds (true if a given function is above or below a
given threshold).

4.1. Rules for fetch-and-follow tasks

Given these sensory predicates, it is straight-
forward to write rules to implement fetching, fol-
lowing, and delivering various objects. One rule
tells the system that it should use the driveto

behavior to establish the near predicate. Another
rule tells it that to achieve the inhand predicate,
it needs to be near the object and facing it, then
open the mandibles and drive forward. A separate
set of mandible control rules grab any object that
is seen to be in the grabbing area.

Some of the control rules are implemented as
conjunctions and disjunctions of sensory predi-
cates (see �gure 4). These are computed as in
section 3.3. Conjunctions come in two forms de-
pending on whether they spawn their subgoals se-
rially or in parallel. Parallel conjunctions, when
goals, always make their conjuncts goals, whereas
serial conjunctions �rst make their �rst conjunct
a goal, then, when it is achieved, make the second
conjunct a goal, and so on. Subgoaling is updated
on every clock cycle, so if the �rst conjunct be-
comes false, the other conjuncts lose their goal
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(define-disjunction near (visually-near odometrically-near))

(define-disjunction facing (visually-facing odometrically-facing))

(define-disjunction boundp (see have-description odometrically-tracking))

(define-parallel-conjunction grabable (near facing))

(define-serial-conjunction grab (grabable mandibles-open approach))

Fig. 4. Other compound predicates in Kludge.

;; Performing grab will make an object be in the hand.

(reduce-unsatisfied inhand grab)

;; Run the driveto behavior to get near an object

(when-unsatisfied near driveto)

;; Run the visual-search! behavior when you need to see an object.

(do-all! (logand (unsatisfied-goal see)

(know-that have-description))

visual-search!)

;; Control mandibles

(when-unsatisfied mandibles-open open-mandibles!)

(when (not-exists? (know-that near))

(fold-mandibles!))

(when (exists? (know-that inhand))

(close-mandibles!))

;; Query the user if they didn't specify a desired role.

(when-unsatisfied boundp query-user)

Fig. 5. Explicit action and reduction rules.

status. Disjunctions do not perform goal regres-
sion at all.
In addition to conjunctions and disjunctions,

there are a set of explicit goal reduction rules link-
ing goals to behaviors or subgoals (see �gure 5).
The semantics of the rules are as follows:

� (when-unsatis�ed P B): when P (r) for some
role r is an unsatis�ed goal, �re the behavior
B(r).

� (reduce-unsatis�ed P1 P2): when P1(r) is an
unsatis�ed goal, assert goal(P2(r)).

� (do-all! P proc): run proc on every role for
which P is true.

� when: as in Common Lisp.

These control rules allow the system to per-
form a range of actions from simply driving up
to a place or object to delivering a speci�ed ob-
ject to a speci�ed place. The choice of the task
is determined by the initial bindings of represen-
tations to roles and by the goals asserted in the
system. To grab a red object, bind the red descrip-
tion to patient and assert goal(inhand(patient)).
To drive to it without grabbing it, bind it to
destination and assert goal(near(destination))
instead. To drive to a speci�ed place, bind its
odometric position to destination instead of the
red description.
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Table 2. Kludge's lexicon

Item Category Roles Action

bring verb patient destination assert goal(inhand(patient)), then assert
goal(near(destination))

get verb patient assert goal(inhand(patient))
go verb assert goal(near(destination))
come verb destination assert goal(near(destination))
follow verb patient assert goal(near(patient))
face verb patient assert goal(facing(patient))
wait verb wait until time in time-bu�er
turn verb turn number of degrees in turn-bu�er
then conjunction halt parser until current goal is satis�ed
home noun bind current location in odometry STM to current role
kludge noun bind kludge description to current role
blue noun bind blue description to current role
green noun bind green description to current role
red noun bind red description to current role
pink noun bind pink description to current role
black noun bind black description to current role
me noun bind black description to current role
to preposition destination set current role to destination

from preposition source set current role to source

continually modi�er set don't-terminate ag
seconds modi�er set time bu�er to current time plus number bu�er
degrees modi�er set turn bu�er to number bu�er
left modi�er negate turn bu�er
right modi�er none

Table 3. Example execution trace for the command ``bring red to me.'' Red is interpreted as any red object,

and me is interpreted as any sufficiently large black object (the human is assumed to be wearing black

jeans).

Event or state Response
goal(inhand(patient)) Assert goal(see(patient))
have� description(patient) Fire visual-search!(patient)
see(patient) Fire driveto(patient)
near(patient) ^ facing(patient) Fire open-mandibles and approach
Patient stolen by human Close mandibles, abort approach, re-�re visual-search
see(patient) Fire driveto(patient)
near(patient) ^ facing(patient) Fire open-mandibles and approach
inhand(patient) Fire close-mandibles, assert goal(near(destination))
goal(near(destination)) Assert goal(K(distance(destination)))
goal(K(distance(destination))) Assert goal(see(destination))
have� description(destination) Fire visual-search!(destination)
see(destination) Fire driveto(destination)
Dest goes out of view Abort driveto, �re visual-search!(destination)
see(destination) Fire driveto(destination)
near(destination) ^ facing(destination) Fire open-mandibles

4.2. Following instructions

To test out the system, we wrote a simple �nite-
state parser. While simple, it has been useful for
debugging and experimentation.

The parser keeps the user's input in a shift-
register and parses one word per control loop cy-
cle. A separate shift register holds the role names
that successive syntactic components of the cur-
rent verb are to take. Encountering a verb as-

serts a goal and loads the role register. Encoun-
tering a noun binds the representation listed in
its lexical entry to the current role. Encounter-
ing a preposition changes the current role. The
conjunction \then" (as in \do A then do B")
halts the parser until the current goal is achieved.
There are also a few modi�ers, such as \continu-
ally" which changes verbs from specifying goals of
achievement to maintenance goals. As a �nal fea-
ture, the action rule (when-unsatisfied boundp
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query-user) (see �gure 5) �res whenever one of
the roles of the current verb has been left unspec-
i�ed. It halts the robot and displays the message
\what?" or \where?", depending on the role that
was left unbound. If the user replies (i.e. with
\home" or \to me"), the parser restarts and �lls
in the missing binding.

It must be stressed that this is an extremely
simplistic model of parsing. It does not support
determiners and it treats color words as nouns. It
is limited to sentences like:

follow me

follow blue

get blue

bring blue here

bring blue to me

bring blue to red

go to blue then wait 10 seconds then

bring blue to me

The system is not meant as a model of human
comprehension.

4.3. Example

Table 3 gives an example trace of the system's be-
havior for the command \bring red to me". Note
that unexpected contingencies, such as the human
stealing the ball from it or its target straying out
of view, do not cause execution failures | they
simply cause it to rerun earlier actions (c.f. Nils-
son [32]).

5. Discussion

Role-passing is an alternative hybrid control ar-
chitecture. Unlike previous attempts to extend
behavior-based systems [34, 27], it allows limited
predicate/argument structure in reasoning and
passing of parameters to behaviors. This improves
modularity and reduces computational complex-
ity. It allows a single control system to implement
\go to the red ball," \go to the blue ball," and
\go to odometric location (x,y)" without having
separate behaviors for each possible destination.
It also makes it practical to write at least a sim-
plistic NL parser.

Unlike tiered architectures [18] which rely on
conventional symbolic databases, role-passing has
a tractable epistemic model. Behaviors, per-
ceptual operations, and the reasoning system
all communicate using a standard mechanism in
which objects are referred to by their role tags
rather than through lisp symbols (BEE0001) or
S-expressions encoding de�nite descriptions [14].
The bit-vectors used in role passing are easy for
the perceptual system to generate and for the be-
haviors to decode. This makes it practical to com-
pletely update the world model on every cycle of
the control loop. Since the inference rules can be
compiled into a dependency network, the robot
can also update all its inferences on every cycle,
allowing the system to detect and respond to exe-
cution errors or other contingencies immediately.

By representing the agent's goals and state of
knowledge explicitly using modals, the system can
automatically allocate perceptual attention by re-
gressing knowledge goals through logical connec-
tives to determine the epistemic actions needed to
achieve them. This simpli�es the design of the
system and relieves the programmer of the need
to salt her axiomatization with separate epistemic
rules stating when and how to check preconditions
and postconditions.

The cost of these bene�ts is reduced expressive-
ness. Role-passing cannot handle term expres-
sions, binary predicates or functions with arbi-
trary image sets. It is too weak to express the
situation calculus. While some limitations must
be accepted in order to assure real-time perfor-
mance, there may be better trade-o�s that can be
made.

Certain features, however, appear very di�cult
to support in any such system. Term expressions
require the dynamic allocation and mutation of
arbitrary tree-structures, which are extremely dif-
�cult to parallelize. This amounts to solving the
connectionist binding problem [36]. So far as is
known, any general solution to implementing ar-
bitrary dynamic tree and pointer structures will
either require a large (potentially O(n2)) switch-
ing network to route signals, or will impose se-
rial bottlenecks (e�ectively reducing it to a von
Neumann machine). The fact that matching term
expressions (uni�cation) is P-complete [10] and
is therefore believed to be unparallelizable is not
encouraging.4
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While role passing doesn't support term expres-
sions, it does allow the binding of a small, �xed set
of top-level variables, an approach which is gain-
ing popularity. Minsky has proposed implement-
ing communication within systems using global
busses with task-speci�c semantics (\c-lines" [30],
and later \pronomes" [31]). Shastri and Ajjana-
gadde describe a solution to the binding problem
that supports a small number of general variables
[35]. (Indeed, Shastri uses bit-vector representa-
tions for implementing his scheme on von Neu-
mann architectures.) Agre and Chapman [2, 1]
discuss the use of indexicals bound in the percep-
tual system as a replacement for variables bound
by switching networks in the central system.
Like Agre and Chapman's deictic represen-

tation, role passing requires that the indexical
names have functional signi�cance; that they are
e�ectively roles (slots) of what would otherwise
be represented in some kind of frame structure.
However, Agre and Chapman use extremely spe-
ci�c roles names. Microdoer requires that there
be a relatively small number of role names that
get recycled from situation to situation. Whereas
Agre and Chapman's Pengi system has indexicals
like the-bee-that-is-chasing-me, a role pass-
ing system would have to use a more generic role
name like threat.
One advantage of giving indexicals speci�c

functional signi�cance (rather than making them
more like normal variables) is that it gives us
some leverage in representing higher-order pred-
icates. Microdoer cannot represent a relation like
deliver(A;B) because its extension would require
a quadratic number of bits. By analyzing deliver
as

deliver ^ patient = A ^ destination = B

rather than as a two-argument relation, we can
represent the concept of delivery. There is still
a cost, however: we cannot represent two dif-
ferent instances of delivery at once because they
would require inconsistent bindings of patient and
destination. Thus, the technique of modeling bi-
nary predicates with indexicals is much less ex-
pressive than full �rst-order logic. It cannot, for
example, express the situation calculus. However,
it buys a considerable complexity improvement
over languages that can (e.g. [25]) and also pro-

vides us with a simple epistemology. If the higher
arity predicates that arise in practice can't be han-
dled by some simple mechanism like indexicals,
then it is unclear how we can ground them e�-
ciently in real time at all.
As mobile robots and active vision systems be-

come more capable, the need for powerful, expres-
sive control languages will grow. A promising ap-
proach is to look for maximally expressive lan-
guages that are e�ciently mappable into depen-
dency networks. Parallel networks give good per-
formance, but, more importantly, can be grounded
e�ciently in sensors. Role-passing is one exam-
ple of how this can be done, and microdoer is
one example of how a programming language can
be built around role-passing. Better architec-
tures and languages will no doubt be be developed
as the robotics community attempts increasingly
complex tasks.
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Notes

1. Real robots almost never use a purely reactive or de-
liberative system in the sense used here. For example,
the subsumption architecture [7] is not a reactive sys-
tem. In fact, it has been used to build planners [29, 27].
However, they are still useful idealizations and so the
debate within the community has been largely cast in
terms of them.

2. In reality, the complexity of planning depends on many
factors, see [11] for a survey of results on complexity
bounds for di�erent forms of planning.

3. This is how it would work in a real hardware implemen-
tation. In our serial implementation, behaviors are just
subroutines that are called several times a second. Ports
are implemented with a subroutine, called by the behav-
ior, that scans the bindings of an STM and returns the
output data for the tracker bound to the speci�ed role.
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4. Care must be taken in this argument, however. Any
problem can be parallelized for bounded size inputs
by using an exponential amount of hardware. Tech-
nically, the P-completeness result suggests that uni-
�cation cannot be computed by small, shallow, feed-
forward networks.
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