
Closing the Loop: Feedback at Your Fingertips

Ionut Trestian, Rahul Potharaju, Aleksandar Kuzmanovic
ionut@northwestern.edu, rpo219@eecs.northwestern.edu, akuzma@northwestern.edu

ABSTRACT
The global network we call the Internet today was started a
few decades ago following a very simple model. The entities
involved in the beginning had very simple (stated) goals and
interaction between them was consequently simple. Tech-
nological advances in the recent years have brought exciting
new capabilities for Internet users - they can access the Inter-
net from almost anywhere using mobile devices. The entities
involved in the functioning of the Internet are however much
more complex in current times and their goals are increas-
ingly fragmented and often times hidden. In this paper we
elaborate on two such entities: (i) mobile network providers,
and (ii) application or service providers. Considering recent
signs of tussle and debate between the two entities we argue
in this paper that given the obviously more complex nature
of the Internet of today, feedback from the end-user is useful
and might help decision makers, policy makers settle the net-
work neutrality debate. We further elaborate on our efforts
of building an application aimed at several popular mobile
platforms that captures feedback about the availability and
performance (both measured and judged by the user) of the
network, and of Internet services and applications.

1. INTRODUCTION
In the networking research community, the network

neutrality debate has been focused mainly on personal
computers as affected devices and p2p as the main af-
fected application [12, 14, 9]. Several systems have con-
sequently been developed so far, as a natural response
of the research community, that try to capture ISP bias
towards p2p flows. The main techniques used to capture
such bias consist of conducting either passive measure-
ments [12] or actively sending application probes [14,
9]. The traffic involved being that of p2p applications
there is no clear moral line that would distinguish be-
tween the two parties (p2p users and ISPs). Indeed,
heavy p2p flows can negatively affect available ISP re-
sources and decrease performance for other users. Also
the content that users download often times infringes
copyright laws. On the other hand the Internet should
be regarded by all involved parties as a free network
that does not discriminate against individual applica-
tions and consequently ISPs should optimize their net-
works to meet the increase in resource demand of cus-
tomers. Considering all of the above, systems that pas-
sively or actively collect evidences of ISP bias towards

p2p applications seem the best solution for this problem
as their output mainly points out that such bias exists
without effectively taking sides. Sadly, bias shown by
Internet providers has proven to be much broader and
extensive than pictured above for the p2p case. This
bias, as we will elaborate later in this paper, covers dif-
ferent aspects of the wired and mobile Internet. As the
mobile environment has, to the best of our knowledge,
been overlooked by the research community so far we
take on the task of building a system that addresses
network neutrality violations for mobile networks and
devices.

Designing a system that manages to capture net-
work neutrality violations is a challenging task as wit-
nessed from previous work. Doing so for small power
constrained devices such as mobile phones can prove
even more challenging. One observation that motivates
this work is that computer systems inherently become
increasingly complex because of the constant struggle
between system designers and malevolent entities. As
such, often system designers turn to the end-user as an
obvious solution to problems that ultimately affect him.
Some examples of problems where the solution can in-
volve also user feedback include: spam (users marking
e-mails as spam or legitimate), search (users bumping
up or down search results), content rating (users rating
content relevance or quality) etc. In this paper we ar-
gue that as it is clear that the end-user is also one of
the parties affected by mobile operator bias, the users
are the ones that can ultimately help solve the network
neutrality debate by closing this loop that links users,
ISPs, and application or service providers in a natural
way, by offering feedback.

Our main contributions in this paper are the follow-
ing. (i) We bring into the focus of the research commu-
nity the recent mobile network neutrality debate and
argue that user input in the form of explicit feedback
or network performance tests might help shed light onto
it. (ii) Following on the previous point we describe our
development of a mobile application (developed for sev-
eral popular mobile platforms) that aims at capturing
user feedback with regard to the availability and per-
formance of the network, and of Internet services and
applications. In order to validate the explicit feedback
provided by the user the application performs also a
series of lightweight measurements between our servers

1



and the mobile device.
This paper is further structured as follows. In Section

2 we discuss on recent cases of mobile operator bias
as captured by the public opinion and the media. In
Section 3 we present current views and arguments for
using user input in computer systems. In Section 4 we
present the architecture of our system. Related work is
presented in Section 5 and we present our conclusions
and future work in Section 6.

2. MOBILE OPERATOR BIAS
One of the clearest cases of mobile operator bias can

be seen in the recent blocking of the Skype streaming
application by T-Mobile in Germany [1]. Skype is one
of the most popular VoIP applications in the world.
It is available on various platforms including the Ap-
ple iPhone. T-Mobile is the exclusive reseller for the
iPhone in Germany. T-Mobile publicly declared that
it will block Skype both contractually (clients who use
the application will be cut off from the service) and
physically (Skype use will be detected and blocked by
network methods) on both iPhone and Blackberry de-
vices. The reason that they have cited is that the high
amount of traffic generated by Skype users will thwart
network performance. Skype has publicly responded to
this [3]. They have conjectured other reasons for the
blocking (Skype usage would drop T-Mobile revenues).

Also as of March 31st, several amendments have been
made to the Telecommunications Package by the Euro-
pean Parliament [7] that give discretionary powers to
providers to prioritize and block certain applications
and further legitimize abuses of the type previously
mentioned. These amendments have been met with
disbelief and various agencies have since filed petitions
such as the one previously cited.

Mobile operator bias is not limited to a few disparate
cases. It is extensive and it comprehensively covers mul-
tiple aspects of user activity on the mobile Internet:
search [4], social networking [6], VoIP [1], streaming [5].
The motivations behind operator bias can be classified
into two categories:

Aggressive resource use. Applications make use
of various network resources for their functioning (i.e.,
bandwidth, messaging services etc). Popular applica-
tions with a consistent userbase and network operators
often find themselves on conflicting positions as the goal
of the network operator is to offer satisfactory service to
all network users, a service which sometimes degrades
because of the users of the popular application. One
example of this type of bias is given by the recent T-
Mobile blocking of the Twitter social networking appli-
cation. T-Mobile has blocked Twitter mainly because
Twitter users send SMS messages to the service [6]. As
SMS uses a mobile network control channel a big in-
flow of such messages will also affect the functioning

of the mobile network. If one is to accept the reasons
mentioned by T-Mobile for the blocking of Skype, the
blocking also falls under this category however one can-
not ignore the obvious economic ramifications that this
action has either.

Rival application or service support. Operators
can have conflicting interests with the applications that
carry traffic on their networks. They sometimes favor
a different service [5] or they regard the application as
a competitor to their own services [1]. In all cases it
is the end-user that suffers since he cannot use a more
favored application or a cheaper alternative to the ser-
vices offered by the operator.

3. INVOLVING THE END USER
Involving users in computer system design is not new

to this paper. In fact a variety of systems (even net-
worked) incorporate user characteristics into their de-
sign in order to enable new applications or meet scaling
demands. Most such systems either try to model the
user or predict him. Some examples include: capturing
predictable actions in order to prefetch content, opera-
tion scheduling that minimizes user wait time etc. At
most, systems either try to model the user by using util-
ity functions and considering all users canonical or try
to guess individual user actions by looking at bursts of
traffic or proceeding action patterns.

More recent work surprisingly shows that user feed-
back can also be used to reduce computer power con-
sumption [11] or reduce latency in remote display sys-
tems [10].

4. SYSTEM ARCHITECTURE
Systems which address network neutrality in wired

networks are inherently different from systems that are
constrained to work on small power constrained devices
such as mobile phones. In this section we outline the
trade-offs involved in designing such a system and the
design choices we consequently made.

We first describe what a generic implementation on a
regular computer would consist of and after that detail
limitations of mobile platforms and the corresponding
trade offs we made.

4.1 Underlying Architecture
While the scope of developing a feedback driven ap-

plication is more for desktop systems, it is pretty narrow
for mobile platforms. For instance, whereas a desktop
application can run on a similar chain of wide operating
systems with little or no modifications, the same is not
true for mobile phones due to their differences in the
development tool chain. The underlying architecture
irrespective of the platform at which the application is
being targeted, however remains similar. Data is col-
lected according to two mechanisms:

2



• Periodic: The activity is logged every n seconds of
elapsed time.

• Events: The activity is logged whenever the user
performs a pre-determined set of actions.

The Application Level Logger is mainly intended
to record any application specific data or system wide
data that might be of use. We collect data such as time
spent in execution, virtual memory size, page faults per
minute and various other metrics depending on the ca-
pabilities provided by the underlying operating system.
Using the two collection mechanisms, we enumerate and
record all processes that are running every 30 seconds.
Measuring this at the end-users side is attractive for a
couple of reasons: It is simple and provides access to
measurements only accessible at the host side. We also
leave to the user an option for providing feedback in
case the current networked applications don’t perform
at the expected level.

One of the ways of collecting data is by employing a
Browser Plugin. The browser plugin has a wider va-
riety of uses depending on the browser in question and
the mobile platform on which it is running. Because
we focus mainly on user feedback, we intended to keep
the application front-end simple so it provides a facil-
ity to submit the reason for the user’s annoyance. In
the background, we measure a lot of other parameters
unrelated to the network to help us characterize any
false-positives that we might encounter.

Because we target mobile users, we needed a mech-
anism to allow us to handle any potential bugs that
we might encounter in the future. Thus, one of the
primary design decisions we made was to include an
Automatic Updater Component in our client-side
core architecture. This component periodically contacts
a stable server hosted on Google’s M-Lab to check if an
update is present. The updates are divided into two
types: critical updates and normal updates. If the up-
dater finds that a critical update is available but fails
to update the local application, it immediately stops all
logging activity until the application is updated. For a
normal update, however, the updater follows the con-
ventional way of applying the update whenever it senses
idle activity. The task of notifying the automatic up-
dater is taken care by the Update Manager component
on the server-side.

It is common with systems that passively or actively
collect evidences of ISP bias towards an application con-
sume a considerable amount of bandwidth. In fact,
there is a trade off between the level of application
monitoring one can get and the network bandwidth the
user is willing to sacrifice in order to support such high
levels of monitoring. Our current system periodically
checks the log file size and once it reaches a specific
size, an Uploader component attempts to upload it

to the Google M-Lab server. It has a retry timer that
attempts to resend the file in case it fails in its initial
attempts.

One of the most important component of such a sys-
tem is the Network Profiler which captures the net-
work level activity both as a timer based event (periodic
capture of inbound and outbound flows) and an activity
based event (whenever the user is annoyed about some-
thing). Depending on whether or not a libpcap port
is available to the specific platform, we change our im-
plementation strategy. For instance, as will be further
discussed, there is no stable port of libpcap available
to Windows Mobile so we had to resort to data could
be captured through the browser plugin. We log the
connection start time, connection establishment time,
connection finish time and the inbound and outbound
bytes in a compact netflow format. Finally, we per-
form simple network measurements using the operating
system’s implementation of ping and traceroute.

Mobile device implementation considerations.

On the server-side, we differentiate each mobile user
by a unique global identifier known as an IMEI (Inter-
national Mobile Equipment Identity) number which is
analogous to an Open ID and is guaranteed to be glob-
ally unique i.e. no two mobile phones in the world can
have the same IMEI number. Each log file that is up-
loaded to the server is named after the IMEI number of
the device so that they can be separated at the time of
inserting into the database on the server-side.

4.2 Implementation on Windows Mobile
In this section we detail our current effort of imple-

menting the application on Windows Mobile devices.

4.2.1 Description

Windows Mobile is an operating system targeting at
devices that are based on the Microsoft Windows API.
We developed our application for Windows Mobile 5
devices. We chose this operating system because of its
Persistent Storage capability which stores data in flash
memory. The main advantage with this is that no data
is lost (which is apparently very crucial for us to achieve
our goal) even when the device loses power. Though
there are several development options to develop ap-
plications for these devices, we use Microsoft’s .NET
Compact Framework to develop our application mainly
because:

• It is a subset of the .NET framework and hence
shares many components with software develop-
ment on desktop systems

• It provides an emulator to test the application with
minimal difficulty. We used a combination of Vi-
sual C# (for designing the UI Front-end, Applica-
tion Level Activity Logger, and Log File Uploader)

3



and Visual C++ (for implementing the browser
plugin using Native C++ code). At startup time,
the application starts in the background and con-
tinues running until the user interrupts it with an
annoyance event.

In addition to the above mentioned points, because
Windows CE uses Win32 API, some Windows code
can be recomplied for Windows CE. However, the dis-
play and memory properties are significantly different.
The use of multithreading/multitasking significantly in-
creases the potential for the applications being devel-
oped.

4.2.2 Limitations

The Windows mobile device by itself did not have
have any serious limitations as far as our application
development was concerned. However we did observe
that the color screens and the powerful CPUs drained
significant power from the battery thus making the de-
vice exhibit a shorter battery life.

4.2.3 Design Decisions

Though it is likely that most Windows code will work
on Windows CE without modifications, we did run through
some issues. For instance, there was no easy way to
write the application startup code in Visual C++ so we
had to resort to using native code. libpcap is a popular
library for sniffing packets at the network level. At the
time of writing this paper, there was no proper port
available that worked with the Windows CE TCP/IP
stack so we had to omit the Network profiler module
from our application. Instead we resorted to writing
down most functionality as an Internet Explorer plu-
gin. Because Windows CE supports multithreading, we
managed to run our application as a background task,
thus not interfering with the user operations unless it is
really needed.

4.3 Implementation on the iPhone OS
In this section we are describing our future work re-

garding a port to the iPhone OS.

4.3.1 Description

The iPhone OS was built as a derivative of the MAC
OS X and has four abstraction layers: Core OS layer,
Core Service Layer, Media Layer and the Cocoa Touch
Layer and runs on devices that are based on an ARM
processor and uses OpenGL ES 1.1. The development of
applications for the iPhone was made popular with the
release of the device’s SDK in the early 2008. It allows
developers to make applications for the iPhone and iPod
Touch, as well as test them in an iPhone simulator.
XCode is the preferred tool chain of development. Most
of the development code is written in Objective C which

is a simple programming language that enables complex
object oriented programming.

4.3.2 Limitations

There are a number of advantages and disadvantages
with using iPhone to achieve our goal:

• Application development involves a hefty develop-
ment fee (and involves various catches like penal-
ties etc.).

• Applications should be approved by Apple before
they can be released into the AppStore which is the
default application repository from which applica-
tions are downloaded and installed on the iPhone.

• iPhone does not support backgrounding of appli-
cations. Because of this, it is not possible to design
any type of monitoring applications. Thus, our ap-
plication will monitor activities and network level
flows only when installed on a Jailbroken iPhone.
On a normal iPhone, the monitoring application
is pretty much limited to collecting user feedback.

• There is no official development tool chain avail-
able for Windows or Linux. One needs to have a
MAC OS X to develop applications for iPhone.

4.3.3 Design Decisions

Other than Apple’s application deployment limita-
tions described above, we do not foresee any design
limitations for this device. Though the learning curve
is considered pretty steep for the iPhone, we will try to
port most of the components to the iPhone.

4.4 Implementation on the gPhone OS - An-
droid

In this section we are describing our future work re-
garding a port to the Google Android.

4.4.1 Description

Android is an operating system that runs on gPhones
and is based on the linux kernel. Most of the develop-
ment is done by writing managed code in Java, con-
trolling the device via Google-developed Java libraries.
The Android SDK includes a comprehensive set of de-
velopment tools which include a debugger, libraries and
a handset emulator.

4.4.2 Limitations

While we initially thought of Android to be possess-
ing similar capabilities as that of Windows Mobile, there
were some basic differences:

• Though it uses a Linux kernel as its operating sys-
tem, it is not a conventional Linux distribution
and thus does not have a native X Window Sys-
tem, nor does it support the full set of standard

4



GNU libraries like its system libraries like GNU
C Library). This specific modification makes it
difficult to reuse existing Linux applications or li-
braries on Android.

• Android does not use established Java standards,
i.e. Java SE and ME which prevents compatibility
among Java applications written for those plat-
forms and those for the Android platform. An-
droid only reuses the Java language syntax, but
does not provide the full-class libraries and APIs
bundled with Java SE or ME.

4.4.3 Design Decisions

Like the iPhone, because the gPhone uses a Linux
kernel, we consider it feasible to port our application.
We are still unsure of any issues that might turn out
with the Network Profiler component.

5. RELATED WORK
Recently networked systems have started incorporat-

ing user feedback into their functioning for tasks such as
determining spam e-mails, improving search relevance,
content rating etc.

A variety of other systems rely on user input to op-
timize their functioning. HomeMaestro is such an ex-
ample [13]. It aims at providing application fairness for
a household based on a set of application level weights.
The likely input for these weights is the end-user as the
authors note.

OneClick [8] has been designed as a system which
uses user feedback (by pressing a key when the user is
dissatisfied) when using network applications. The sys-
tem uses qualitative measures to quantify the Quality
of Experience of a single user. As such it is orthogonal
to our design since we aim at capturing repeated bad
experiences for multiple users of a mobile network.

HerdictWeb [2] uses user feedback to give verdicts of
website availability in given regions. It functions as a
Browser extension which allows users to report unavail-
able websites. The extension doesn’t record response
times and browsing events such as errors so it is hard
to validate the feedback given by users to actual avail-
ability events. Such a feedback model (browser toolbar)
would not function on a mobile phone where browsers
are minimal. Our solution, a standalone application
which also records events in a lightweight manner is a
better fit.

6. CONCLUSIONS AND FUTURE WORK
This project is aimed at addressing mobile network

neutrality violations from the part of ISPs. As we de-
tailed in the paper, our personal belief is that the device
users should actively participate in the network neu-
trality debate by providing feedback concerning their
preferred applications and services.

Our future work includes the port of our system to
other mobile platforms and addressing the security as-
pects of the functioning of the system. As we expect
our system to become popular we are dealing with har-
nessing the M-lab infrastructure to meet system scaling
demands.

7. REFERENCES
[1] German carrier t-mobile blocking skype.

http://www.washingtonpost.com/wp-dyn/content/

article/2009/04/01/AR2009040101124.html.

[2] Herdictweb. http://www.herdict.org/web/.

[3] Is deutsche telekom playing an april’s fool joke at the

expense of skype users in germany?

http://share.skype.com/sites/en/2009/04/

is deutsche telekom playing an.html.

[4] Mobile giants plot secret rival to google. http:

//www.telegraph.co.uk/finance/migrationtemp/2803788/

Mobile-giants-plot-secret-rival-to-Google.html.

[5] Mobile video, net neutrality, and verizon wireless.

http://www.dslreports.com/shownews/

Mobile-Video-Net-Neutrality-and-Verizon-Wireless-79989.

[6] Net neutrality outrage: reports of t-mobile blocking twitter.

http://blogs.zdnet.com/ip-telephony/?p=2877.

[7] Opennet coalition open letter to the european parliment.

http://www.assoprovider.it/index.php?option=

com content&task=view&id=213&Itemid=46.

[8] K.-T. Chen, C. C. Tu, and W.-C. Xiao. Oneclick: A

framework for measuring network quality of experience. In

Proceedings of IEEE INFOCOM 2009, 2009.

[9] M. Dischinger, A. Mislove, A. Haeberlen, and K. P.

Gummadi. Detecting BitTorrent Blocking. In Proceedings

of the 8th ACM SIGCOMM Conference on Internet

Measurement (IMC’08), Vouliagmeni, Greece, October

2008.

[10] J. R. Lange, P. A. Dinda, and S. Rossoff. Experiences with

client-based speculative remote display. In ATC’08:

USENIX 2008 Annual Technical Conference on Annual

Technical Conference, Berkeley, CA, USA, 2008.

[11] A. Shye, Y. Pan, B. Scholbrock, J. S. Miller, G. Memik,

P. A. Dinda, and R. P. Dick. Power to the people:

Leveraging human physiological traits to control

microprocessor frequency. In MICRO ’08: Proceedings of

the 2008 41st IEEE/ACM International Symposium on

Microarchitecture, Washington, DC, USA, 2008.

[12] M. Tariq, M. Motiwala, and N. Feamster. NANO: Network

Access Neutrality Observatory. In Seventh ACM Workshop

on Hot Topics in Networks (HotNets-VII), Calgary,

Canada, October 2008.

[13] Thomas Karagiannis and Elias Athanasopoulos and

Christos Gkantsidis, and Peter Key. HomeMaestro: Order

from Chaos in Home Networks. In Microsoft Research

Tech. Rep. MSR-TR-2008-84, 2008.

[14] Y. Zhang, M. Mao, and M. Zhang. Ascertaining the Reality

of Network Neutrality Violation in Backbone ISPs. In

Seventh ACM Workshop on Hot Topics in Networks

(HotNets-VII), Calgary, Canada, October 2008.

5


