
Introduction
CS 211

Winter 2020



Road map

• What’s it all about?
• Topics
• Policies & grades
• Academic honesty
• Help & advice

2



What CS 211 is all about (1/2)

From the course abstract:

• CS 211 teaches foundational software design skills at a
small-to-medium scale. We will grow from writing single
functions to writing interacting systems of several
components.

• We aim to provide a bridge from the student-oriented HtDP
languages (that is, CS 111) to real, industry-standard
languages and tools. Like C11, the UNIX shell, Make,
C++14, and CLion.

• We begin by learning…

3



What CS 211 is all about (1/2)

From the course abstract:

• CS 211 teaches foundational software design skills at a
small-to-medium scale.

We will grow from writing single
functions to writing interacting systems of several
components.

• We aim to provide a bridge from the student-oriented HtDP
languages (that is, CS 111) to real, industry-standard
languages and tools. Like C11, the UNIX shell, Make,
C++14, and CLion.

• We begin by learning…

3



What CS 211 is all about (1/2)

From the course abstract:

• CS 211 teaches foundational software design skills at a
small-to-medium scale. We will grow from writing single
functions to writing interacting systems of several
components.

• We aim to provide a bridge from the student-oriented HtDP
languages (that is, CS 111) to real, industry-standard
languages and tools. Like C11, the UNIX shell, Make,
C++14, and CLion.

• We begin by learning…

3



What CS 211 is all about (1/2)

From the course abstract:

• CS 211 teaches foundational software design skills at a
small-to-medium scale. We will grow from writing single
functions to writing interacting systems of several
components.

• We aim to provide a bridge from the student-oriented HtDP
languages

(that is, CS 111) to real, industry-standard
languages and tools. Like C11, the UNIX shell, Make,
C++14, and CLion.

• We begin by learning…

3



What CS 211 is all about (1/2)

From the course abstract:

• CS 211 teaches foundational software design skills at a
small-to-medium scale. We will grow from writing single
functions to writing interacting systems of several
components.

• We aim to provide a bridge from the student-oriented HtDP
languages (that is, CS 111)

to real, industry-standard
languages and tools. Like C11, the UNIX shell, Make,
C++14, and CLion.

• We begin by learning…

3



What CS 211 is all about (1/2)

From the course abstract:

• CS 211 teaches foundational software design skills at a
small-to-medium scale. We will grow from writing single
functions to writing interacting systems of several
components.

• We aim to provide a bridge from the student-oriented HtDP
languages (that is, CS 111) to real, industry-standard
languages and tools.

Like C11, the UNIX shell, Make,
C++14, and CLion.

• We begin by learning…

3



What CS 211 is all about (1/2)

From the course abstract:

• CS 211 teaches foundational software design skills at a
small-to-medium scale. We will grow from writing single
functions to writing interacting systems of several
components.

• We aim to provide a bridge from the student-oriented HtDP
languages (that is, CS 111) to real, industry-standard
languages and tools. Like C11, the UNIX shell, Make,
C++14, and CLion.

• We begin by learning…

3



What CS 211 is all about (1/2)

From the course abstract:

• CS 211 teaches foundational software design skills at a
small-to-medium scale. We will grow from writing single
functions to writing interacting systems of several
components.

• We aim to provide a bridge from the student-oriented HtDP
languages (that is, CS 111) to real, industry-standard
languages and tools. Like C11, the UNIX shell, Make,
C++14, and CLion.

• We begin by learning…

3



What CS 211 is all about (2/2)

From the course abstract:

• We begin by learning the basics of imperative programming
and manual memory management using the C
programming language.

This will help you form
connections between the high-level programming concepts
you learned in CS 111 and the low-level machine concepts
you will learn in CS 213.

• Then we transition to C++, which provides abstraction
mechanisms such as classes and templates that we use to
express our design ideas. We’ll learn how to define our
own, new types that act like the built-in ones.

• Topics include…

4



What CS 211 is all about (2/2)

From the course abstract:

• We begin by learning the basics of imperative programming
and manual memory management using the C
programming language. This will help you form
connections between the high-level programming concepts
you learned in CS 111 and the low-level machine concepts
you will learn in CS 213.

• Then we transition to C++, which provides abstraction
mechanisms such as classes and templates that we use to
express our design ideas.

We’ll learn how to define our
own, new types that act like the built-in ones.

• Topics include…

4



What CS 211 is all about (2/2)

From the course abstract:

• We begin by learning the basics of imperative programming
and manual memory management using the C
programming language. This will help you form
connections between the high-level programming concepts
you learned in CS 111 and the low-level machine concepts
you will learn in CS 213.

• Then we transition to C++, which provides abstraction
mechanisms such as classes and templates that we use to
express our design ideas. We’ll learn how to define our
own, new types that act like the built-in ones.

• Topics include…

4



What CS 211 is all about (2/2)

From the course abstract:

• We begin by learning the basics of imperative programming
and manual memory management using the C
programming language. This will help you form
connections between the high-level programming concepts
you learned in CS 111 and the low-level machine concepts
you will learn in CS 213.

• Then we transition to C++, which provides abstraction
mechanisms such as classes and templates that we use to
express our design ideas. We’ll learn how to define our
own, new types that act like the built-in ones.

• Topics include…

4



Topics

• Language mechanisms

▶ New syntax for functional programming: expressions,
values, conditionals, variables, functions

▶ Imperative programming
▶ Statements: sequencing, iteration
▶ Mutation: objects, assignment

▶ Memory allocation on the stack and the heap
▶ Representing information with structs, arrays, pointers
▶ Static types, type erasure, generics

• Design techniques

▶ Data abstraction: defining our own types
▶ Memory management via ownership and borrowing
▶ RAII: Resource Acquisition Is Initialization

• Engineering practices

▶ Testing: for gaining confidence in our software
▶ Debugging: to see what’s happening in memory
▶ The Unix shell: a compositional user interface

5



Topics

• Language mechanisms
▶ New syntax for functional programming

: expressions,
values, conditionals, variables, functions

▶ Imperative programming
▶ Statements: sequencing, iteration
▶ Mutation: objects, assignment

▶ Memory allocation on the stack and the heap
▶ Representing information with structs, arrays, pointers
▶ Static types, type erasure, generics

• Design techniques

▶ Data abstraction: defining our own types
▶ Memory management via ownership and borrowing
▶ RAII: Resource Acquisition Is Initialization

• Engineering practices

▶ Testing: for gaining confidence in our software
▶ Debugging: to see what’s happening in memory
▶ The Unix shell: a compositional user interface

5



Topics

• Language mechanisms
▶ New syntax for functional programming: expressions,

values, conditionals, variables, functions

▶ Imperative programming
▶ Statements: sequencing, iteration
▶ Mutation: objects, assignment

▶ Memory allocation on the stack and the heap
▶ Representing information with structs, arrays, pointers
▶ Static types, type erasure, generics

• Design techniques

▶ Data abstraction: defining our own types
▶ Memory management via ownership and borrowing
▶ RAII: Resource Acquisition Is Initialization

• Engineering practices

▶ Testing: for gaining confidence in our software
▶ Debugging: to see what’s happening in memory
▶ The Unix shell: a compositional user interface

5



Topics

• Language mechanisms
▶ New syntax for functional programming: expressions,

values, conditionals, variables, functions
▶ Imperative programming

▶ Statements: sequencing, iteration
▶ Mutation: objects, assignment

▶ Memory allocation on the stack and the heap
▶ Representing information with structs, arrays, pointers
▶ Static types, type erasure, generics

• Design techniques

▶ Data abstraction: defining our own types
▶ Memory management via ownership and borrowing
▶ RAII: Resource Acquisition Is Initialization

• Engineering practices

▶ Testing: for gaining confidence in our software
▶ Debugging: to see what’s happening in memory
▶ The Unix shell: a compositional user interface

5



Topics

• Language mechanisms
▶ New syntax for functional programming: expressions,

values, conditionals, variables, functions
▶ Imperative programming

▶ Statements: sequencing, iteration
▶ Mutation: objects, assignment

▶ Memory allocation on the stack and the heap

▶ Representing information with structs, arrays, pointers
▶ Static types, type erasure, generics

• Design techniques

▶ Data abstraction: defining our own types
▶ Memory management via ownership and borrowing
▶ RAII: Resource Acquisition Is Initialization

• Engineering practices

▶ Testing: for gaining confidence in our software
▶ Debugging: to see what’s happening in memory
▶ The Unix shell: a compositional user interface

5



Topics

• Language mechanisms
▶ New syntax for functional programming: expressions,

values, conditionals, variables, functions
▶ Imperative programming

▶ Statements: sequencing, iteration
▶ Mutation: objects, assignment

▶ Memory allocation on the stack and the heap
▶ Representing information with structs, arrays, pointers

▶ Static types, type erasure, generics

• Design techniques

▶ Data abstraction: defining our own types
▶ Memory management via ownership and borrowing
▶ RAII: Resource Acquisition Is Initialization

• Engineering practices

▶ Testing: for gaining confidence in our software
▶ Debugging: to see what’s happening in memory
▶ The Unix shell: a compositional user interface

5



Topics

• Language mechanisms
▶ New syntax for functional programming: expressions,

values, conditionals, variables, functions
▶ Imperative programming

▶ Statements: sequencing, iteration
▶ Mutation: objects, assignment

▶ Memory allocation on the stack and the heap
▶ Representing information with structs, arrays, pointers
▶ Static types, type erasure, generics

• Design techniques

▶ Data abstraction: defining our own types
▶ Memory management via ownership and borrowing
▶ RAII: Resource Acquisition Is Initialization

• Engineering practices

▶ Testing: for gaining confidence in our software
▶ Debugging: to see what’s happening in memory
▶ The Unix shell: a compositional user interface

5



Topics

• Language mechanisms
▶ New syntax for functional programming: expressions,

values, conditionals, variables, functions
▶ Imperative programming

▶ Statements: sequencing, iteration
▶ Mutation: objects, assignment

▶ Memory allocation on the stack and the heap
▶ Representing information with structs, arrays, pointers
▶ Static types, type erasure, generics

• Design techniques
▶ Data abstraction: defining our own types

▶ Memory management via ownership and borrowing
▶ RAII: Resource Acquisition Is Initialization

• Engineering practices

▶ Testing: for gaining confidence in our software
▶ Debugging: to see what’s happening in memory
▶ The Unix shell: a compositional user interface

5



Topics

• Language mechanisms
▶ New syntax for functional programming: expressions,

values, conditionals, variables, functions
▶ Imperative programming

▶ Statements: sequencing, iteration
▶ Mutation: objects, assignment

▶ Memory allocation on the stack and the heap
▶ Representing information with structs, arrays, pointers
▶ Static types, type erasure, generics

• Design techniques
▶ Data abstraction: defining our own types
▶ Memory management via ownership and borrowing

▶ RAII: Resource Acquisition Is Initialization

• Engineering practices

▶ Testing: for gaining confidence in our software
▶ Debugging: to see what’s happening in memory
▶ The Unix shell: a compositional user interface

5



Topics

• Language mechanisms
▶ New syntax for functional programming: expressions,

values, conditionals, variables, functions
▶ Imperative programming

▶ Statements: sequencing, iteration
▶ Mutation: objects, assignment

▶ Memory allocation on the stack and the heap
▶ Representing information with structs, arrays, pointers
▶ Static types, type erasure, generics

• Design techniques
▶ Data abstraction: defining our own types
▶ Memory management via ownership and borrowing
▶ RAII

: Resource Acquisition Is Initialization

• Engineering practices

▶ Testing: for gaining confidence in our software
▶ Debugging: to see what’s happening in memory
▶ The Unix shell: a compositional user interface

5



Topics

• Language mechanisms
▶ New syntax for functional programming: expressions,

values, conditionals, variables, functions
▶ Imperative programming

▶ Statements: sequencing, iteration
▶ Mutation: objects, assignment

▶ Memory allocation on the stack and the heap
▶ Representing information with structs, arrays, pointers
▶ Static types, type erasure, generics

• Design techniques
▶ Data abstraction: defining our own types
▶ Memory management via ownership and borrowing
▶ RAII: Resource Acquisition Is Initialization

• Engineering practices

▶ Testing: for gaining confidence in our software
▶ Debugging: to see what’s happening in memory
▶ The Unix shell: a compositional user interface

5



Topics

• Language mechanisms
▶ New syntax for functional programming: expressions,

values, conditionals, variables, functions
▶ Imperative programming

▶ Statements: sequencing, iteration
▶ Mutation: objects, assignment

▶ Memory allocation on the stack and the heap
▶ Representing information with structs, arrays, pointers
▶ Static types, type erasure, generics

• Design techniques
▶ Data abstraction: defining our own types
▶ Memory management via ownership and borrowing
▶ RAII: Resource Acquisition Is Initialization

• Engineering practices
▶ Testing

: for gaining confidence in our software
▶ Debugging: to see what’s happening in memory
▶ The Unix shell: a compositional user interface

5



Topics

• Language mechanisms
▶ New syntax for functional programming: expressions,

values, conditionals, variables, functions
▶ Imperative programming

▶ Statements: sequencing, iteration
▶ Mutation: objects, assignment

▶ Memory allocation on the stack and the heap
▶ Representing information with structs, arrays, pointers
▶ Static types, type erasure, generics

• Design techniques
▶ Data abstraction: defining our own types
▶ Memory management via ownership and borrowing
▶ RAII: Resource Acquisition Is Initialization

• Engineering practices
▶ Testing: for gaining confidence in our software

▶ Debugging: to see what’s happening in memory
▶ The Unix shell: a compositional user interface

5



Topics

• Language mechanisms
▶ New syntax for functional programming: expressions,

values, conditionals, variables, functions
▶ Imperative programming

▶ Statements: sequencing, iteration
▶ Mutation: objects, assignment

▶ Memory allocation on the stack and the heap
▶ Representing information with structs, arrays, pointers
▶ Static types, type erasure, generics

• Design techniques
▶ Data abstraction: defining our own types
▶ Memory management via ownership and borrowing
▶ RAII: Resource Acquisition Is Initialization

• Engineering practices
▶ Testing: for gaining confidence in our software
▶ Debugging

: to see what’s happening in memory
▶ The Unix shell: a compositional user interface

5



Topics

• Language mechanisms
▶ New syntax for functional programming: expressions,

values, conditionals, variables, functions
▶ Imperative programming

▶ Statements: sequencing, iteration
▶ Mutation: objects, assignment

▶ Memory allocation on the stack and the heap
▶ Representing information with structs, arrays, pointers
▶ Static types, type erasure, generics

• Design techniques
▶ Data abstraction: defining our own types
▶ Memory management via ownership and borrowing
▶ RAII: Resource Acquisition Is Initialization

• Engineering practices
▶ Testing: for gaining confidence in our software
▶ Debugging: to see what’s happening in memory

▶ The Unix shell: a compositional user interface

5



Topics

• Language mechanisms
▶ New syntax for functional programming: expressions,

values, conditionals, variables, functions
▶ Imperative programming

▶ Statements: sequencing, iteration
▶ Mutation: objects, assignment

▶ Memory allocation on the stack and the heap
▶ Representing information with structs, arrays, pointers
▶ Static types, type erasure, generics

• Design techniques
▶ Data abstraction: defining our own types
▶ Memory management via ownership and borrowing
▶ RAII: Resource Acquisition Is Initialization

• Engineering practices
▶ Testing: for gaining confidence in our software
▶ Debugging: to see what’s happening in memory
▶ The Unix shell

: a compositional user interface

5



Topics

• Language mechanisms
▶ New syntax for functional programming: expressions,

values, conditionals, variables, functions
▶ Imperative programming

▶ Statements: sequencing, iteration
▶ Mutation: objects, assignment

▶ Memory allocation on the stack and the heap
▶ Representing information with structs, arrays, pointers
▶ Static types, type erasure, generics

• Design techniques
▶ Data abstraction: defining our own types
▶ Memory management via ownership and borrowing
▶ RAII: Resource Acquisition Is Initialization

• Engineering practices
▶ Testing: for gaining confidence in our software
▶ Debugging: to see what’s happening in memory
▶ The Unix shell: a compositional user interface

5



Grade composition

what % when #

drop

programming homeworks 50* Thursdays 6

1
final project proposal 5 Fr 2/21 – Th 2/27 1

0

two-week final project 15 Th 3/12 1

0

in-class midterm exams 30* Tu 2/4 & Tu 3/10 2

0

lab section attendance 0† weekly 8

2

* Divided equally.

† May be used for close calls or to tweak weights in your favor.

6



Grade composition

what % when #

drop

programming homeworks 50* Thursdays 6

1

final project proposal 5 Fr 2/21 – Th 2/27 1

0

two-week final project 15 Th 3/12 1

0
in-class midterm exams 30* Tu 2/4 & Tu 3/10 2

0

lab section attendance 0† weekly 8

2

* Divided equally.

† May be used for close calls or to tweak weights in your favor.

6



Grade composition

what % when #

drop

programming homeworks 50* Thursdays 6

1

final project proposal 5 Fr 2/21 – Th 2/27 1

0

two-week final project 15 Th 3/12 1

0

in-class midterm exams 30* Tu 2/4 & Tu 3/10 2

0
lab section attendance 0† weekly 8

2

* Divided equally.

† May be used for close calls or to tweak weights in your favor.

6



Grade composition

what % when #

drop

programming homeworks 50* Thursdays 6

1

final project proposal 5 Fr 2/21 – Th 2/27 1

0

two-week final project 15 Th 3/12 1

0

in-class midterm exams 30* Tu 2/4 & Tu 3/10 2

0

lab section attendance 0† weekly 8

2

* Divided equally.
† May be used for close calls or to tweak weights in your favor.

6



Grade composition

what % when # drop
programming homeworks 50* Thursdays 6 1
final project proposal 5 Fr 2/21 – Th 2/27 1 0
two-week final project 15 Th 3/12 1 0
in-class midterm exams 30* Tu 2/4 & Tu 3/10 2 0
lab section attendance 0† weekly 8 2

* Divided equally.
† May be used for close calls or to tweak weights in your favor.

6



Homework policies

• Some will be done on your own

• Most will be pair-programmed with a registered partner
• Late code will not be accepted
• You’ll need to do a self evaluation for each
• No cheating…

7



Homework policies

• Some will be done on your own
• Most will be pair-programmed with a registered partner

• Late code will not be accepted
• You’ll need to do a self evaluation for each
• No cheating…

7



Homework policies

• Some will be done on your own
• Most will be pair-programmed with a registered partner
• Late code will not be accepted

• You’ll need to do a self evaluation for each
• No cheating…

7



Homework policies

• Some will be done on your own
• Most will be pair-programmed with a registered partner
• Late code will not be accepted
• You’ll need to do a self evaluation for each

• No cheating…

7



Homework policies

• Some will be done on your own
• Most will be pair-programmed with a registered partner
• Late code will not be accepted
• You’ll need to do a self evaluation for each
• No cheating…

7



Academic honesty

In CS 211, we take cheating very seriously.

• Cheating is when you:

▶ Receive help of any kind on an exam (except from
authorized course staff)

▶ Give help of any kind on an exam
▶ Share (give or receive) homework code with anyone who is

not your official, registered partner
▶ Obtain code from an outside resource, such as Stack

Overflow

• Please don’t do these things, because:

▶ If you don’t write code, you won’t learn; try to embrace the
struggle!

▶ All cheating will be reported to the relevant dean for
investigation

• If unsure about your particular situation, ask the instructor
or other course staff

8



Academic honesty

In CS 211, we take cheating very seriously.

• Cheating is when you:

▶ Receive help of any kind on an exam (except from
authorized course staff)

▶ Give help of any kind on an exam
▶ Share (give or receive) homework code with anyone who is

not your official, registered partner
▶ Obtain code from an outside resource, such as Stack

Overflow
• Please don’t do these things, because:

▶ If you don’t write code, you won’t learn; try to embrace the
struggle!

▶ All cheating will be reported to the relevant dean for
investigation

• If unsure about your particular situation, ask the instructor
or other course staff

8



Academic honesty

In CS 211, we take cheating very seriously.

• Cheating is when you:
▶ Receive help of any kind on an exam (except from

authorized course staff)

▶ Give help of any kind on an exam
▶ Share (give or receive) homework code with anyone who is

not your official, registered partner
▶ Obtain code from an outside resource, such as Stack

Overflow
• Please don’t do these things, because:

▶ If you don’t write code, you won’t learn; try to embrace the
struggle!

▶ All cheating will be reported to the relevant dean for
investigation

• If unsure about your particular situation, ask the instructor
or other course staff

8



Academic honesty

In CS 211, we take cheating very seriously.

• Cheating is when you:
▶ Receive help of any kind on an exam (except from

authorized course staff)
▶ Give help of any kind on an exam

▶ Share (give or receive) homework code with anyone who is
not your official, registered partner

▶ Obtain code from an outside resource, such as Stack
Overflow

• Please don’t do these things, because:

▶ If you don’t write code, you won’t learn; try to embrace the
struggle!

▶ All cheating will be reported to the relevant dean for
investigation

• If unsure about your particular situation, ask the instructor
or other course staff

8



Academic honesty

In CS 211, we take cheating very seriously.

• Cheating is when you:
▶ Receive help of any kind on an exam (except from

authorized course staff)
▶ Give help of any kind on an exam
▶ Share (give or receive) homework code with anyone who is

not your official, registered partner

▶ Obtain code from an outside resource, such as Stack
Overflow

• Please don’t do these things, because:

▶ If you don’t write code, you won’t learn; try to embrace the
struggle!

▶ All cheating will be reported to the relevant dean for
investigation

• If unsure about your particular situation, ask the instructor
or other course staff

8



Academic honesty

In CS 211, we take cheating very seriously.

• Cheating is when you:
▶ Receive help of any kind on an exam (except from

authorized course staff)
▶ Give help of any kind on an exam
▶ Share (give or receive) homework code with anyone who is

not your official, registered partner
▶ Obtain code from an outside resource, such as Stack

Overflow

• Please don’t do these things, because:

▶ If you don’t write code, you won’t learn; try to embrace the
struggle!

▶ All cheating will be reported to the relevant dean for
investigation

• If unsure about your particular situation, ask the instructor
or other course staff

8



Academic honesty

In CS 211, we take cheating very seriously.

• Cheating is when you:
▶ Receive help of any kind on an exam (except from

authorized course staff)
▶ Give help of any kind on an exam
▶ Share (give or receive) homework code with anyone who is

not your official, registered partner
▶ Obtain code from an outside resource, such as Stack

Overflow
• Please don’t do these things, because:

▶ If you don’t write code, you won’t learn; try to embrace the
struggle!

▶ All cheating will be reported to the relevant dean for
investigation

• If unsure about your particular situation, ask the instructor
or other course staff

8



Academic honesty

In CS 211, we take cheating very seriously.

• Cheating is when you:
▶ Receive help of any kind on an exam (except from

authorized course staff)
▶ Give help of any kind on an exam
▶ Share (give or receive) homework code with anyone who is

not your official, registered partner
▶ Obtain code from an outside resource, such as Stack

Overflow
• Please don’t do these things, because:

▶ If you don’t write code, you won’t learn; try to embrace the
struggle!

▶ All cheating will be reported to the relevant dean for
investigation

• If unsure about your particular situation, ask the instructor
or other course staff

8



Academic honesty

In CS 211, we take cheating very seriously.

• Cheating is when you:
▶ Receive help of any kind on an exam (except from

authorized course staff)
▶ Give help of any kind on an exam
▶ Share (give or receive) homework code with anyone who is

not your official, registered partner
▶ Obtain code from an outside resource, such as Stack

Overflow
• Please don’t do these things, because:

▶ If you don’t write code, you won’t learn; try to embrace the
struggle!

▶ All cheating will be reported to the relevant dean for
investigation

• If unsure about your particular situation, ask the instructor
or other course staff

8



Academic honesty

In CS 211, we take cheating very seriously.

• Cheating is when you:
▶ Receive help of any kind on an exam (except from

authorized course staff)
▶ Give help of any kind on an exam
▶ Share (give or receive) homework code with anyone who is

not your official, registered partner
▶ Obtain code from an outside resource, such as Stack

Overflow
• Please don’t do these things, because:

▶ If you don’t write code, you won’t learn; try to embrace the
struggle!

▶ All cheating will be reported to the relevant dean for
investigation

• If unsure about your particular situation, ask the instructor
or other course staff

8



Getting help

• In person. Your course staff has office hours:
Instructor: Jesse Tov (TuTh 3:30–4:30)

Grad TA: Mohammad Kavousi
Peer TAs: Ann Pigott, Brando Socarras, David Jin,

Elise Lee, Margot Sobota, Max Chapin,
Naythen Farr, Priya Kini

The office hours schedule will be linked from the course
web page:

https://users.cs.northwestern.edu/~jesse/course/cs211/

• Online. Ask questions on Campuswire:
https://campuswire.com/c/G123C6150

9

https://users.cs.northwestern.edu/~jesse/course/cs211/
https://campuswire.com/c/G123C6150


Getting help

• In person. Your course staff has office hours:
Instructor: Jesse Tov (TuTh 3:30–4:30)
Grad TA: Mohammad Kavousi

Peer TAs: Ann Pigott, Brando Socarras, David Jin,
Elise Lee, Margot Sobota, Max Chapin,
Naythen Farr, Priya Kini

The office hours schedule will be linked from the course
web page:

https://users.cs.northwestern.edu/~jesse/course/cs211/

• Online. Ask questions on Campuswire:
https://campuswire.com/c/G123C6150

9

https://users.cs.northwestern.edu/~jesse/course/cs211/
https://campuswire.com/c/G123C6150


Getting help

• In person. Your course staff has office hours:
Instructor: Jesse Tov (TuTh 3:30–4:30)
Grad TA: Mohammad Kavousi
Peer TAs: Ann Pigott, Brando Socarras, David Jin,

Elise Lee, Margot Sobota, Max Chapin,
Naythen Farr, Priya Kini

The office hours schedule will be linked from the course
web page:

https://users.cs.northwestern.edu/~jesse/course/cs211/

• Online. Ask questions on Campuswire:
https://campuswire.com/c/G123C6150

9

https://users.cs.northwestern.edu/~jesse/course/cs211/
https://campuswire.com/c/G123C6150


Getting help

• In person. Your course staff has office hours:
Instructor: Jesse Tov (TuTh 3:30–4:30)
Grad TA: Mohammad Kavousi
Peer TAs: Ann Pigott, Brando Socarras, David Jin,

Elise Lee, Margot Sobota, Max Chapin,
Naythen Farr, Priya Kini

The office hours schedule will be linked from the course
web page:

https://users.cs.northwestern.edu/~jesse/course/cs211/

• Online. Ask questions on Campuswire:
https://campuswire.com/c/G123C6150

9

https://users.cs.northwestern.edu/~jesse/course/cs211/
https://campuswire.com/c/G123C6150


Getting help

• In person. Your course staff has office hours:
Instructor: Jesse Tov (TuTh 3:30–4:30)
Grad TA: Mohammad Kavousi
Peer TAs: Ann Pigott, Brando Socarras, David Jin,

Elise Lee, Margot Sobota, Max Chapin,
Naythen Farr, Priya Kini

The office hours schedule will be linked from the course
web page:

https://users.cs.northwestern.edu/~jesse/course/cs211/

• Online. Ask questions on Campuswire:
https://campuswire.com/c/G123C6150

9

https://users.cs.northwestern.edu/~jesse/course/cs211/
https://campuswire.com/c/G123C6150


Advice

• If you’re considering dropping, come talk to me first.

• The only prereq is CS 111, so if you succeeded there then
you do belong here.

• If you find the course difficult, that’s because it’s difficult.
• Be kind to each other.

10



Advice

• If you’re considering dropping, come talk to me first.
• The only prereq is CS 111, so if you succeeded there then

you do belong here.

• If you find the course difficult, that’s because it’s difficult.
• Be kind to each other.

10



Advice

• If you’re considering dropping, come talk to me first.
• The only prereq is CS 111, so if you succeeded there then

you do belong here.
• If you find the course difficult, that’s because it’s difficult.

• Be kind to each other.

10



Advice

• If you’re considering dropping, come talk to me first.
• The only prereq is CS 111, so if you succeeded there then

you do belong here.
• If you find the course difficult, that’s because it’s difficult.
• Be kind to each other.

10



11



Relative homework difficulties

HW Difficulty
1 2

2 4
3 7
4 11
5 4
6 6

FP 8ish

(On a scale from 1 to 10)

12



Relative homework difficulties

HW Difficulty
1 2
2 4

3 7
4 11
5 4
6 6

FP 8ish

(On a scale from 1 to 10)

12



Relative homework difficulties

HW Difficulty
1 2
2 4
3 7

4 11
5 4
6 6

FP 8ish

(On a scale from 1 to 10)

12



Relative homework difficulties

HW Difficulty
1 2
2 4
3 7
4 11

5 4
6 6

FP 8ish

(On a scale from 1 to 10)

12



Relative homework difficulties

HW Difficulty
1 2
2 4
3 7
4 11
5 4

6 6
FP 8ish

(On a scale from 1 to 10)

12



Relative homework difficulties

HW Difficulty
1 2
2 4
3 7
4 11
5 4
6 6

FP 8ish

(On a scale from 1 to 10)

12



Relative homework difficulties

HW Difficulty
1 2
2 4
3 7
4 11
5 4
6 6

FP 8ish

(On a scale from 1 to 10)

12



Prexamination!

Suppose each function is called with an arbitrary integer value.
Circle all possible outcomes:

T The function returns true
F The function returns false
A The program terminates abnormally (a crash!)

13



Prexamination!

Suppose each function is called with an arbitrary integer value.
Circle all possible outcomes:

T The function returns true
F The function returns false
A The program terminates abnormally (a crash!)

bool g(int z)
{

return false;
}

T F A

13



Prexamination!

Suppose each function is called with an arbitrary integer value.
Circle all possible outcomes:

T The function returns true
F The function returns false
A The program terminates abnormally (a crash!)

bool g(int z)
{

return false;
}

T F A

13



Prexamination!

Suppose each function is called with an arbitrary integer value.
Circle all possible outcomes:

T The function returns true
F The function returns false
A The program terminates abnormally (a crash!)

bool h(int z)
{

int y = z / 0;
return false;

}

T F A

13



Prexamination!

Suppose each function is called with an arbitrary integer value.
Circle all possible outcomes:

T The function returns true
F The function returns false
A The program terminates abnormally (a crash!)

bool h(int z)
{

int y = z / 0;
return false;

}

T F A

13


