
Typed Imperative Programming
CS 211

Winter 2020

Initial code setup

The code in this course is available online. To download a copy
of this lecture into your Unix shell account:

% cd cs211
% curl -k $URL211/lec/02typed_imp.tgz | tar zxv
…
% cd 02typed_imp

• The curl(1) command downloads a URL and prints its
contents to its standard output (stdout).

• The tar(1) command extracts various forms of archives.
(The “(1)” means you can get help by running man 1 tar.)

• The | character is a Unix “pipe,” which attaches the first
command’s stdout to the second command’s stdin.

2

Initial code setup

The code in this course is available online. To download a copy
of this lecture into your Unix shell account:

% cd cs211
% curl -k $URL211/lec/02typed_imp.tgz | tar zxv
…
% cd 02typed_imp

• The curl(1) command downloads a URL and prints its
contents to its standard output (stdout).

• The tar(1) command extracts various forms of archives.
(The “(1)” means you can get help by running man 1 tar.)

• The | character is a Unix “pipe,” which attaches the first
command’s stdout to the second command’s stdin.

2

Initial code setup

The code in this course is available online. To download a copy
of this lecture into your Unix shell account:

% cd cs211
% curl -k $URL211/lec/02typed_imp.tgz | tar zxv
…
% cd 02typed_imp

• The curl(1) command downloads a URL and prints its
contents to its standard output (stdout).

• The tar(1) command extracts various forms of archives.
(The “(1)” means you can get help by running man 1 tar.)

• The | character is a Unix “pipe,” which attaches the first
command’s stdout to the second command’s stdin.

2

Initial code setup

The code in this course is available online. To download a copy
of this lecture into your Unix shell account:

% cd cs211
% curl -k $URL211/lec/02typed_imp.tgz | tar zxv
…
% cd 02typed_imp

• The curl(1) command downloads a URL and prints its
contents to its standard output (stdout).

• The tar(1) command extracts various forms of archives.
(The “(1)” means you can get help by running man 1 tar.)

• The | character is a Unix “pipe,” which attaches the first
command’s stdout to the second command’s stdin.

2

Problem: Compute the nth Fibonacci number

3

Definition

fib(n)
{

n if n < 2;
fib(n − 2) + fib(n − 1) otherwise.

n fib(n)
0 0
1 1
2 1
3 2
4 3
5 5
6 8
7 13
8 21

4

Definition

fib(n)
{

n if n < 2;
fib(n − 2) + fib(n − 1) otherwise.

n fib(n)
0 0
1 1
2 1
3 2
4 3
5 5
6 8
7 13
8 21

4

In C (don’t do this at home!)

long fib(int n)
{

return n < 2
? n
: fib(n - 2) + fib(n - 1);

}

5

In C (don’t do this at home!)

long fib(int n)
{

return n < 2
? n
: fib(n - 2) + fib(n - 1);

}

long fib(int n)
{

return (n < 2)? n : (fib(n - 2) + fib(n - 1));
}

5

In C (don’t do this at home!)

long fib(int n)
{

return n < 2
? n
: fib(n - 2) + fib(n - 1);

}

long fib(int n){return n<2?n:fib(n-2)+fib(n-1);}

5

In C (don’t do this at home!)

long fib(int n)
{

return n < 2
? n
: fib(n - 2) + fib(n - 1);

}

long fib(int n){
return n<2?n:fib
(n-2)+fib(n-1);}

5

In C (don’t do this at home!)

long fib(int n)
{

return n < 2
? n
: fib(n - 2) + fib(n - 1);

}

Things to notice:
• Static types inta and longb must be given for variables

(argument n) and function results.
• This function does computation but not input/output.
aa fixed-width machine “integer”
balso a fixed-width “integer,” but maybe wider

5

In C (less weird but still slow [and weird])
long fib(int n)
{

if (n < 2) {
return n;

} else {
long b = fib(n - 1);
return a + fib(n - 1);

}
}

6

In C (less weird but still slow [and weird])
long fib(int n)
{

if (n < 2) {
return n;

} else {
long b = fib(n - 1);
return a + fib(n - 1);

}
}

Syntax of if:
if (⟨test-expr⟩) { // evaluate ⟨test-expr⟩; then…

⟨then-stms⟩ // do these if ⟨test-expr⟩ was true
} else {

⟨else-stms⟩ // do these if ⟨test-expr⟩ was false
}

6

In C (less weird but still slow [and weird])
long fib(int n)
{

if (n < 2) {
return n;

} else {
long b = fib(n - 1);
return a + fib(n - 1);

}
}

Syntax of variable definition:
⟨type⟩ ⟨var-name⟩ = ⟨init-expr⟩;

Semantics: allocate space named ⟨var-name⟩ for a value of type
⟨type⟩; evaluate ⟨init-expr⟩ and store its result there.

6

In C (less weird but still slow [and weird])
long fib(int n)
{

if (n < 2) {
return n;

} else {
long b = fib(n - 1);
return a + fib(n - 1);

}
}

Syntax of return:
return ⟨result-expr⟩;

Semantics: evaluate ⟨result-expr⟩, then return that value from this
function immediately.

6

In C (less weird but still slow [and weird])
long fib(int n)
{

if (n < 2) {
return n;

} else {
long b = fib(n - 1);
return a + fib(n - 1);

}
}

More syntax of if:
if (⟨test-expr⟩) {

⟨then-stms⟩
}

6

Everything nests
if (⟨first-test-expr⟩) { // But don't write this.

⟨A-stms⟩
} else {

if (⟨second-test-expr⟩) {
⟨B-stms⟩

} else {
⟨C-stms⟩

}
}

if (⟨first-test-expr⟩) { // Do write this.
⟨A-stms⟩

} else if (⟨second-test-expr⟩) {
⟨B-stms⟩

} else {
⟨C-stms⟩

}

7

Everything nests
if (⟨first-test-expr⟩) { // But don't write this.

⟨A-stms⟩
} else {

if (⟨second-test-expr⟩) {
⟨B-stms⟩

} else {
⟨C-stms⟩

}
}

if (⟨first-test-expr⟩) { // Do write this.
⟨A-stms⟩

} else if (⟨second-test-expr⟩) {
⟨B-stms⟩

} else {
⟨C-stms⟩

}
7

Problem: It’s super slow

8

Solution: Mutation (and iteration)

9

The essence of imperative programming

a 0x00000005

b 0x00000008

c

▶ int a = 5;

▶

int b = 8;

▶

int c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

10

The essence of imperative programming

a 0x00000005

b 0x00000008

c

▶

int a = 5;
▶ int b = 8;

▶

int c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

10

The essence of imperative programming

a 0x00000005

b 0x00000008

c

▶

int a = 5;

▶

int b = 8;
▶ int c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

10

The essence of imperative programming

a 0x00000005

b 0x00000008

c

▶

int a = 5;

▶

int b = 8;

▶

int c;

▶ c = a + b;

▶

a = b;

▶

b = c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

10

The essence of imperative programming

a 0x00000005

b 0x00000008

c 0x0000000D

▶

int a = 5;

▶

int b = 8;

▶

int c;

▶

c = a + b;
▶ a = b;

▶

b = c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

10

The essence of imperative programming

a 0x00000008

b 0x00000008

c 0x0000000D

▶

int a = 5;

▶

int b = 8;

▶

int c;

▶

c = a + b;

▶

a = b;
▶ b = c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

10

The essence of imperative programming

a 0x00000008

b 0x0000000D

c 0x0000000D

▶

int a = 5;

▶

int b = 8;

▶

int c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶ c = a + b;

▶

a = b;

▶

b = c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

10

The essence of imperative programming

a 0x00000008

b 0x0000000D

c 0x00000015

▶

int a = 5;

▶

int b = 8;

▶

int c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

c = a + b;
▶ a = b;

▶

b = c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

10

The essence of imperative programming

a 0x0000000D

b 0x0000000D

c 0x00000015

▶

int a = 5;

▶

int b = 8;

▶

int c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

c = a + b;

▶

a = b;
▶ b = c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

10

The essence of imperative programming

a 0x0000000D

b 0x00000015

c 0x00000015

▶

int a = 5;

▶

int b = 8;

▶

int c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶ c = a + b;

▶

a = b;

▶

b = c;

▶

10

The essence of imperative programming

a 0x0000000D

b 0x00000015

c 0x00000022

▶

int a = 5;

▶

int b = 8;

▶

int c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

c = a + b;
▶ a = b;

▶

b = c;

▶

10

The essence of imperative programming

a 0x00000015

b 0x00000015

c 0x00000022

▶

int a = 5;

▶

int b = 8;

▶

int c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

c = a + b;

▶

a = b;
▶ b = c;

▶

10

The essence of imperative programming

a 0x00000015

b 0x00000022

c 0x00000022

▶

int a = 5;

▶

int b = 8;

▶

int c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

c = a + b;

▶

a = b;

▶

b = c;

▶

c = a + b;

▶

a = b;

▶

b = c;
▶ 10

What’s happening with variables, definitions,
and assignments?

int z = 5; double d = 5; char c = 5;

z += c;

• Numbers (e.g., 0x000000A6 and 3.57e-99) are values.

• An object is a location where you can store a particular
type of value:
z 0x00000005 (holds an int)
d 5.00000000E0000000 (holds a double)
c 0x05 (holds a char)

• A variable is the name of an object (like z and d).
• An assignment modifies the value stored in an object.

11

What’s happening with variables, definitions,
and assignments?

int z = 5; double d = 5; char c = 5;

z += c;

• Numbers (e.g., 0x000000A6 and 3.57e-99) are values.

• An object is a location where you can store a particular
type of value:
z 0x00000005 (holds an int)
d 5.00000000E0000000 (holds a double)
c 0x05 (holds a char)

• A variable is the name of an object (like z and d).
• An assignment modifies the value stored in an object.

11

What’s happening with variables, definitions,
and assignments?

int z = 5; double d = 5; char c = 5;

z += c;

• Numbers (e.g., 0x000000A6 and 3.57e-99) are values.
• An object is a location where you can store a particular

type of value:
z 0x00000005 (holds an int)
d 5.00000000E0000000 (holds a double)
c 0x05 (holds a char)

• A variable is the name of an object (like z and d).
• An assignment modifies the value stored in an object.

11

What’s happening with variables, definitions,
and assignments?

int z = 5; double d = 5; char c = 5;

z += c;

• Numbers (e.g., 0x000000A6 and 3.57e-99) are values.
• An object is a location where you can store a particular

type of value:
z 0x00000005 (holds an int)
d 5.00000000E0000000 (holds a double)
c 0x05 (holds a char)

• A variable is the name of an object (like z and d).

• An assignment modifies the value stored in an object.

11

What’s happening with variables, definitions,
and assignments?

int z = 5; double d = 5; char c = 5;
z += c;

• Numbers (e.g., 0x000000A6 and 3.57e-99) are values.
• An object is a location where you can store a particular

type of value:
z 0x00000005 (holds an int)
d 5.00000000E0000000 (holds a double)
c 0x05 (holds a char)

• A variable is the name of an object (like z and d).
• An assignment modifies the value stored in an object.

11

What’s happening with variables, definitions,
and assignments?

int z = 5; double d = 5; char c = 5;
z += c;

• Numbers (e.g., 0x000000A6 and 3.57e-99) are values.
• An object is a location where you can store a particular

type of value:
z 0x0000000A (holds an int)
d 5.00000000E0000000 (holds a double)
c 0x05 (holds a char)

• A variable is the name of an object (like z and d).
• An assignment modifies the value stored in an object.

11

The other ingredient: iteration with while

Syntax:
while (⟨test-expr⟩) {

⟨body-stms⟩
}

Semantics:

1. Evaluate ⟨test-expr⟩ to a bool.
2. If the bool is false then the loop is finished, so jump to the

next statement after the loop. after it
3. Execute ⟨body-stms⟩.
4. Go back to step 1.

12

The other ingredient: iteration with while

Syntax:
while (⟨test-expr⟩) {

⟨body-stms⟩
}

Semantics:

1. Evaluate ⟨test-expr⟩ to a bool.
2. If the bool is false then the loop is finished, so jump to the

next statement after the loop. after it
3. Execute ⟨body-stms⟩.
4. Go back to step 1.

12

In C, iteratively

long fib(int n)
{

long curr = 0;
long next = 1;

while (n > 0) {
long prev = curr;

// variable definition

curr = next;

// assignment

next += prev;

// add-to

n -= 1;

// subtract-from

}

return curr;
}

13

In C, iteratively

long fib(int n)
{

long curr = 0;
long next = 1;

while (n > 0) {
long prev = curr; // variable definition

curr = next; // assignment
next += prev; // add-to
n -= 1; // subtract-from

}

return curr;
}

13

Counting upwards

with for

long fib(int n)
{

long curr = 0;
long next = 1;

int i = 0;

while (i < n) {
long prev = curr;
curr = next;
next += prev;
++i; // equivalent to i += 1;

}

return curr;
}

14

Counting upwards with for

long fib(int n)
{

long curr = 0;
long next = 1;

int i = 0;

for (; i < n;) {
long prev = curr;
curr = next;
next += prev;
++i;

}

return curr;
}

14

Counting upwards with for

long fib(int n)
{

long curr = 0;
long next = 1;

int i = 0;

for (; i < n; ++i) {
long prev = curr;
curr = next;
next += prev;
// ++i

}

return curr;
}

14

Counting upwards with for

long fib(int n)
{

long curr = 0;
long next = 1;

// int i = 0;

for (int i = 0; i < n; ++i) {
long prev = curr;
curr = next;
next += prev;
// ++i

}

return curr;
}

14

Counting upwards with for

long fib(int n)
{

long curr = 0;
long next = 1;

for (int i = 0; i < n; ++i) {
long prev = curr;
curr = next;
next += prev;

}

return curr;
}

14

Adding I/O

15

Reading user input
#include <stdio.h>

int main()
{

int x = 0, y = 0;

printf("Enter␣two␣integers:␣");
scanf("%d%d", &x, &y);
printf("%d␣*␣%d␣==␣%d\n", x, y, x * y);

}

• scanf(3) takes a template specifying what types of values
to read and how many.

• printf(3) takes a template with holes to fill in with the values
of its remaining arguments.

• %d means scan/print an int in decimal.

src/get_input.c

16

Reading user input
#include <stdio.h>

int main()
{

int x = 0, y = 0;

printf("Enter␣two␣integers:␣");
scanf("%d%d", &x, &y);
printf("%d␣*␣%d␣==␣%d\n", x, y, x * y);

}

• scanf(3) takes a template specifying what types of values
to read and how many.

• printf(3) takes a template with holes to fill in with the values
of its remaining arguments.

• %d means scan/print an int in decimal.

src/get_input.c

16

Reading user input
#include <stdio.h>

int main()
{

int x = 0, y = 0;

printf("Enter␣two␣integers:␣");
scanf("%d%d", &x, &y);
printf("%d␣*␣%d␣==␣%d\n", x, y, x * y);

}

• scanf(3) takes a template specifying what types of values
to read and how many.

• printf(3) takes a template with holes to fill in with the values
of its remaining arguments.

• %d means scan/print an int in decimal.

src/get_input.c

16

Reading user input
#include <stdio.h>

int main()
{

int x = 0, y = 0;

printf("Enter␣two␣integers:␣");
scanf("%d%d", &x, &y);
printf("%d␣*␣%d␣==␣%d\n", x, y, x * y);

}

• scanf(3) takes a template specifying what types of values
to read and how many.

• printf(3) takes a template with holes to fill in with the values
of its remaining arguments.

• %d means scan/print an int in decimal.

src/get_input.c

16

Checking for input errors
#include <stdio.h>

int main()
{

int x, y;
printf("Enter␣two␣integers:␣");

// scanf(3) returns the number of *successful*
// conversions:
int count = scanf("%d%d", &x, &y);
if (count == 2) {

printf("%d␣*␣%d␣==␣%d\n", x, y, x * y);
} else {

printf("Input␣error\n");
return 1;

}
}

src/check_input.c

17

A main function for the fib program

#include <stdio.h>

long fib(int n)
{ … }

int main()
{

int input;

while (scanf("%d", &input) == 1) {
printf("%ld\n", fib(input));

}
}

src/fib_iter.c

18

Structure types

19

Structure types in C

C (like BSL/ISL) uses structures to define new data types by
composition of existing data types
A structure type has a name and some number of fields, each
of which must be declared with a type

20

Syntax to define a struct type

struct posn
{

double x;
double y;

};

struct circle
{

struct posn center;
double radius;

};

Note that the type defined by the struct posn definition, and
used for field center of struct circle is struct posn, not
merely posn. (In C++ you could refer to it either way, but not in
C.)

21

Syntax to define a struct type

struct posn
{

double x;
double y;

};

struct circle
{

struct posn center;
double radius;

};

Note that the type defined by the struct posn definition, and
used for field center of struct circle is struct posn, not
merely posn. (In C++ you could refer to it either way, but not in
C.)

21

Syntax to use a structure
Suppose we have a variable p whose type is struct posn.
How do we access p’s fields?

p.x and p.y

Let’s write a function to compute the Manhattan distance
between two points. Mathematically,

d1((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|

// For the fabs(3) function:
#include <math.h>

// Finds the Manhattan distance between two points.
double manhattan_dist(struct posn p, struct posn q)
{

return fabs(p.x - q.x) + fabs(p.y - q.y);
}

22

Syntax to use a structure
Suppose we have a variable p whose type is struct posn.
How do we access p’s fields? p.x and p.y

Let’s write a function to compute the Manhattan distance
between two points. Mathematically,

d1((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|

// For the fabs(3) function:
#include <math.h>

// Finds the Manhattan distance between two points.
double manhattan_dist(struct posn p, struct posn q)
{

return fabs(p.x - q.x) + fabs(p.y - q.y);
}

22

Syntax to use a structure
Suppose we have a variable p whose type is struct posn.
How do we access p’s fields? p.x and p.y

Let’s write a function to compute the Manhattan distance
between two points. Mathematically,

d1((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|

// For the fabs(3) function:
#include <math.h>

// Finds the Manhattan distance between two points.
double manhattan_dist(struct posn p, struct posn q)
{

return fabs(p.x - q.x) + fabs(p.y - q.y);
}

22

Syntax to use a structure
Suppose we have a variable p whose type is struct posn.
How do we access p’s fields? p.x and p.y

Let’s write a function to compute the Manhattan distance
between two points. Mathematically,

d1((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|

// For the fabs(3) function:
#include <math.h>

// Finds the Manhattan distance between two points.
double manhattan_dist(struct posn p, struct posn q)
{

return fabs(p.x - q.x) + fabs(p.y - q.y);
}

22

Defining and initializing a structure

Usually to get a structure in C, first you define a structure
variable and then initialize it by assigning each field:

struct posn p;
p.x = 3.0;
p.y = 4.0;

struct circle c;
c.center.x = 7.0;
c.center.y = -9.2;
c.radius = 6.4;

C won’t force you to initialize all the fields, but guess what
happens if you a access a field that hasn’t been initialized?

23

Factory functions

If you get tired of initializing structures as on the previous slide,
you can always define a factory function to do the work:
struct circle
make_circle(struct posn center, double radius)
{

struct circle result;
result.center = center;
result.radius = radius;
return result;

}

(Note that functions can both take and return structure values.)

24

Visualizing structure value layout

struct circle c;
c.center.x = 10.0;
c.radius = 50.0;
c.center.y = -7.0;

c:

1.000000000e1 -7.000000000e0 5.000000000e1

25

Visualizing structure value layout

struct circle c;
c.center.x = 10.0;
c.radius = 50.0;
c.center.y = -7.0;

c:

1.000000000e1 -7.000000000e0 5.000000000e1

25

Visualizing structure value layout

struct circle c;
c.center.x = 10.0;
c.radius = 50.0;
c.center.y = -7.0;

c: 1.000000000e1

-7.000000000e0 5.000000000e1

25

Visualizing structure value layout

struct circle c;
c.center.x = 10.0;
c.radius = 50.0;
c.center.y = -7.0;

c: 1.000000000e1

-7.000000000e0

5.000000000e1

25

Visualizing structure value layout

struct circle c;
c.center.x = 10.0;
c.radius = 50.0;
c.center.y = -7.0;

c: 1.000000000e1 -7.000000000e0 5.000000000e1

25

