
Separate Compilation
CS 211

Winter 2020

Initial code setup

The code in this course is available online. To download a copy
of this lecture into your Unix shell account:

% cd cs211
% curl -k $URL211/lec/03separate.tgz | tar zxv
…
% cd 02typed_imp

2

The general problem

It would be really nice if we could:

1. Write some functions in one place.
2. Call those functions from multiple programs.

3

A more specific problem for today

We need to:

1. Write some functions in one place.
2. Write a program that uses those functions.
3. Write tests that ensure those functions are correct.

But: C has no built-in facilities for testing. Your tests are just an
ordinary program that calls the functions and checks the results.
So the goal is the same: one library with two (or more) clients.

4

A more specific problem for today

We need to:

1. Write some functions in one place.
2. Write a program that uses those functions.
3. Write tests that ensure those functions are correct.

But: C has no built-in facilities for testing. Your tests are just an
ordinary program that calls the functions and checks the results.
So the goal is the same: one library with two (or more) clients.

4

Making it concrete

1. The posn library: provides the struct posn type and
three functions, read_posn(), make_posn(), and
manhattan_dist().

2. Client 1, the interact program: uses the posn library to
read positions from the standard input, calculate distances,
and print the distances to the standard output.

3. Client 2, the posn_test test program: checks that the
posn library’s manhattan_dist() function gives the
answers we expect.

5

The posn library (highlights)

// A 2-D point.
struct posn
{

double x;
double y;

};

// Computes the Manhattan distance between two posns.
double manhattan_dist(struct posn p, struct posn q)
{

return fabs(p.x - q.x) + fabs(p.y - q.y);
}

6

The interact program

// import posn library somehow?
#include <stdio.h>

int main()
{

struct posn target = read_posn();

for (;;) {
struct posn each = read_posn();
double dist = manhattan_dist(target, each);
printf("%f\n", dist);

}
}

7

The posn_test test program

// import posn library somehow?
#include <assert.h>

int main()
{

struct posn p = make_posn(0, 0);
struct posn q = make_posn(3, 4);

assert(manhattan_dist(p, p) == 0);
assert(manhattan_dist(q, p) == 7);

}

(The assert() function crashes the program if its argument is
false, or does nothing if its argument is true. We’ll have nicer ways
to write tests in the future, but right now we’ll stick with assert.)

8

The solution, generally

1. Put implementations of functions in .c files.

2. Describe the inferface to each .c file (type definitions,
function signatures) in a corresponding .h (header) file.

3. Each .c file that wants to call code from another .c file
must #include the corresponding .h file.

4. Each .c file is its own compilation unit, which means it is
translated by the compiler in isolation, with no direct
knowledge of the other .c files, into a .o (object) file
containing machine code. All dependencies are via .h files
that the .c file #includes.

5. Once all the .c files for a program have been translated
into .o files, the linker combines them into a single
executable, resolving the references between them.

9

The solution, generally

1. Put implementations of functions in .c files.
2. Describe the inferface to each .c file (type definitions,

function signatures) in a corresponding .h (header) file.

3. Each .c file that wants to call code from another .c file
must #include the corresponding .h file.

4. Each .c file is its own compilation unit, which means it is
translated by the compiler in isolation, with no direct
knowledge of the other .c files, into a .o (object) file
containing machine code. All dependencies are via .h files
that the .c file #includes.

5. Once all the .c files for a program have been translated
into .o files, the linker combines them into a single
executable, resolving the references between them.

9

The solution, generally

1. Put implementations of functions in .c files.
2. Describe the inferface to each .c file (type definitions,

function signatures) in a corresponding .h (header) file.
3. Each .c file that wants to call code from another .c file

must #include the corresponding .h file.

4. Each .c file is its own compilation unit, which means it is
translated by the compiler in isolation, with no direct
knowledge of the other .c files, into a .o (object) file
containing machine code. All dependencies are via .h files
that the .c file #includes.

5. Once all the .c files for a program have been translated
into .o files, the linker combines them into a single
executable, resolving the references between them.

9

The solution, generally

1. Put implementations of functions in .c files.
2. Describe the inferface to each .c file (type definitions,

function signatures) in a corresponding .h (header) file.
3. Each .c file that wants to call code from another .c file

must #include the corresponding .h file.
4. Each .c file is its own compilation unit, which means it is

translated by the compiler in isolation, with no direct
knowledge of the other .c files, into a .o (object) file
containing machine code. All dependencies are via .h files
that the .c file #includes.

5. Once all the .c files for a program have been translated
into .o files, the linker combines them into a single
executable, resolving the references between them.

9

The solution, generally

1. Put implementations of functions in .c files.
2. Describe the inferface to each .c file (type definitions,

function signatures) in a corresponding .h (header) file.
3. Each .c file that wants to call code from another .c file

must #include the corresponding .h file.
4. Each .c file is its own compilation unit, which means it is

translated by the compiler in isolation, with no direct
knowledge of the other .c files, into a .o (object) file
containing machine code. All dependencies are via .h files
that the .c file #includes.

5. Once all the .c files for a program have been translated
into .o files, the linker combines them into a single
executable, resolving the references between them.

9

(And the fiddly details)

• When translating individual source files, pass cc the -c
switch to suppress linking.

• Every .h file should start with a guard,

#pragma once

to prevent processing it more than once per compilation
unit.

• Never #include a .c file. Ever.

10

Why this works

The C compiler is pretty stupid:

• Remembers nothing from one .c file to the next
• Reads strictly downward (so it doesn’t know about things at

the bottom of a file when it’s processing the top of that file)

But:

• To compile a function call, it only needs to know the
signature (type) of the function, not its whole definition.

• A function declaration specifies a function signature
without the definition, like so:

double manhattan_dist(struct posn, struct posn);

(The parameter names are optional, so it makes sense to
omit them from signatures when they aren’t informative.)

11

Why this works

The C compiler is pretty stupid:

• Remembers nothing from one .c file to the next
• Reads strictly downward (so it doesn’t know about things at

the bottom of a file when it’s processing the top of that file)

But:

• To compile a function call, it only needs to know the
signature (type) of the function, not its whole definition.

• A function declaration specifies a function signature
without the definition, like so:
double manhattan_dist(struct posn, struct posn);

(The parameter names are optional, so it makes sense to
omit them from signatures when they aren’t informative.)

11

Example of C scope

C compiler is happy:

double min2(double x, double y)
{

return x < y ? x : y;
}

double min3(double x, double y, double z)
{

return min2(x, min2(y, z));
}

12

Example of C scope

C compiler is unhappy, says that min2 isn’t defined:

double min3(double x, double y, double z)
{

return min2(x, min2(y, z));
}

double min2(double x, double y)
{

return x < y ? x : y;
}

12

Example of C scope

C compiler is happy once again:

double min2(double, double);

double min3(double x, double y, double z)
{

return min2(x, min2(y, z));
}

double min2(double x, double y)
{

return x < y ? x : y;
}

12

The solution, applied

• src/posn.h contains
▶ Definition of struct posn type
▶ Signatures for shared functions (read_posn(),

make_posn(), and manhattan_dist())
• src/posn.c #includes src/posn.h and contains

definitions of the same shared functions
• src/interact.c #includes src/posn.h and contains

the main function for the interact program
• test/posn_test.c #includes src/posn.h and

contains a main function that tests the functions defined in
src/posn.c.

Important C rule: You cannot have more than one definition of the
same symbol (variable, constant, or function) in the same program.
This means that attempting to link interact.o and posn_test.o
together will result in an error.

13

The solution, applied

• src/posn.h contains
▶ Definition of struct posn type
▶ Signatures for shared functions (read_posn(),

make_posn(), and manhattan_dist())
• src/posn.c #includes src/posn.h and contains

definitions of the same shared functions
• src/interact.c #includes src/posn.h and contains

the main function for the interact program
• test/posn_test.c #includes src/posn.h and

contains a main function that tests the functions defined in
src/posn.c.

Important C rule: You cannot have more than one definition of the
same symbol (variable, constant, or function) in the same program.
This means that attempting to link interact.o and posn_test.o
together will result in an error.

13

Build dependencies

posn.h

interact.c posn.c posn_test.c

interact.o posn.o posn_test.o

interact posn_test
cc

-c

cc
-c

cc
-c

cc cc
cc cc

header files:

source files:

object files:

executable files:

14

A bit more Make
To implement the previous slide in Make, we define pattern
rules for particular types of files. Here’s the rule for translating
any .c file into a .o file:

build/%.o: src/%.c | build/
cc -c -o $@ $< $(CFLAGS)

We also need to let Make know which object files depend on
which header files. These dependency specifications say that if
src/posn.h changes then each of the three object files
dependent on it needs to be rebuilt:

build/interact.o: src/posn.h
build/posn.o: src/posn.h
build/posn_test.o: src/posn.h

15

A bit more Make
To implement the previous slide in Make, we define pattern
rules for particular types of files. Here’s the rule for translating
any .c file into a .o file:

build/%.o: src/%.c | build/
cc -c -o $@ $< $(CFLAGS)

We also need to let Make know which object files depend on
which header files. These dependency specifications say that if
src/posn.h changes then each of the three object files
dependent on it needs to be rebuilt:

build/interact.o: src/posn.h
build/posn.o: src/posn.h
build/posn_test.o: src/posn.h

15

Make understands dependencies
Notice that when we build build/posn_test, Make does not
recompile src/posn.c to build/posn.o, because it already
did that to build build/interact.

%

make clean
rm -Rf build
% make build/interact
mkdir -p build
cc -c -o build/interact.o src/interact.c -std=c11…
cc -c -o build/posn.o src/posn.c -std=c11 -pedant…
cc -o build/interact build/interact.o build/posn.…
% make build/posn_test
cc -c -o build/posn_test.o test/posn_test.c -std=…
cc -o build/posn_test build/posn_test.o build/pos…
% make build/posn_test
make: `build/posn_test' is up to date.

16

Make understands dependencies
Notice that when we build build/posn_test, Make does not
recompile src/posn.c to build/posn.o, because it already
did that to build build/interact.

% make clean

rm -Rf build
% make build/interact
mkdir -p build
cc -c -o build/interact.o src/interact.c -std=c11…
cc -c -o build/posn.o src/posn.c -std=c11 -pedant…
cc -o build/interact build/interact.o build/posn.…
% make build/posn_test
cc -c -o build/posn_test.o test/posn_test.c -std=…
cc -o build/posn_test build/posn_test.o build/pos…
% make build/posn_test
make: `build/posn_test' is up to date.

16

Make understands dependencies
Notice that when we build build/posn_test, Make does not
recompile src/posn.c to build/posn.o, because it already
did that to build build/interact.

% make clean
rm -Rf build
%

make build/interact
mkdir -p build
cc -c -o build/interact.o src/interact.c -std=c11…
cc -c -o build/posn.o src/posn.c -std=c11 -pedant…
cc -o build/interact build/interact.o build/posn.…
% make build/posn_test
cc -c -o build/posn_test.o test/posn_test.c -std=…
cc -o build/posn_test build/posn_test.o build/pos…
% make build/posn_test
make: `build/posn_test' is up to date.

16

Make understands dependencies
Notice that when we build build/posn_test, Make does not
recompile src/posn.c to build/posn.o, because it already
did that to build build/interact.

% make clean
rm -Rf build
% make build/interact

mkdir -p build
cc -c -o build/interact.o src/interact.c -std=c11…
cc -c -o build/posn.o src/posn.c -std=c11 -pedant…
cc -o build/interact build/interact.o build/posn.…
% make build/posn_test
cc -c -o build/posn_test.o test/posn_test.c -std=…
cc -o build/posn_test build/posn_test.o build/pos…
% make build/posn_test
make: `build/posn_test' is up to date.

16

Make understands dependencies
Notice that when we build build/posn_test, Make does not
recompile src/posn.c to build/posn.o, because it already
did that to build build/interact.

% make clean
rm -Rf build
% make build/interact
mkdir -p build
cc -c -o build/interact.o src/interact.c -std=c11…
cc -c -o build/posn.o src/posn.c -std=c11 -pedant…
cc -o build/interact build/interact.o build/posn.…
%

make build/posn_test
cc -c -o build/posn_test.o test/posn_test.c -std=…
cc -o build/posn_test build/posn_test.o build/pos…
% make build/posn_test
make: `build/posn_test' is up to date.

16

Make understands dependencies
Notice that when we build build/posn_test, Make does not
recompile src/posn.c to build/posn.o, because it already
did that to build build/interact.

% make clean
rm -Rf build
% make build/interact
mkdir -p build
cc -c -o build/interact.o src/interact.c -std=c11…
cc -c -o build/posn.o src/posn.c -std=c11 -pedant…
cc -o build/interact build/interact.o build/posn.…
% make build/posn_test

cc -c -o build/posn_test.o test/posn_test.c -std=…
cc -o build/posn_test build/posn_test.o build/pos…
% make build/posn_test
make: `build/posn_test' is up to date.

16

Make understands dependencies
Notice that when we build build/posn_test, Make does not
recompile src/posn.c to build/posn.o, because it already
did that to build build/interact.

% make clean
rm -Rf build
% make build/interact
mkdir -p build
cc -c -o build/interact.o src/interact.c -std=c11…
cc -c -o build/posn.o src/posn.c -std=c11 -pedant…
cc -o build/interact build/interact.o build/posn.…
% make build/posn_test
cc -c -o build/posn_test.o test/posn_test.c -std=…
cc -o build/posn_test build/posn_test.o build/pos…
%

make build/posn_test
make: `build/posn_test' is up to date.

16

Make understands dependencies
Notice that when we build build/posn_test, Make does not
recompile src/posn.c to build/posn.o, because it already
did that to build build/interact.

% make clean
rm -Rf build
% make build/interact
mkdir -p build
cc -c -o build/interact.o src/interact.c -std=c11…
cc -c -o build/posn.o src/posn.c -std=c11 -pedant…
cc -o build/interact build/interact.o build/posn.…
% make build/posn_test
cc -c -o build/posn_test.o test/posn_test.c -std=…
cc -o build/posn_test build/posn_test.o build/pos…
% make build/posn_test

make: `build/posn_test' is up to date.

16

Make understands dependencies
Notice that when we build build/posn_test, Make does not
recompile src/posn.c to build/posn.o, because it already
did that to build build/interact.

% make clean
rm -Rf build
% make build/interact
mkdir -p build
cc -c -o build/interact.o src/interact.c -std=c11…
cc -c -o build/posn.o src/posn.c -std=c11 -pedant…
cc -o build/interact build/interact.o build/posn.…
% make build/posn_test
cc -c -o build/posn_test.o test/posn_test.c -std=…
cc -o build/posn_test build/posn_test.o build/pos…
% make build/posn_test
make: `build/posn_test' is up to date.

16

Make performs minimal rebuilds
The touch command updates a file’s modification time. This
lets us see how make deals with files changing:

%

make
make: Nothing to be done for `all'.
% touch src/interact.c
% make
cc -c -o build/interact.o src/interact.c -std=c11…
cc -o build/interact build/interact.o build/posn.…
% touch src/posn.h
% make
cc -c -o build/interact.o src/interact.c -std=c11…
cc -c -o build/posn.o src/posn.c -std=c11 -pedant…
cc -o build/interact build/interact.o build/posn.…
cc -c -o build/posn_test.o test/posn_test.c -std=…
cc -o build/posn_test build/posn_test.o build/pos…

17

Make performs minimal rebuilds
The touch command updates a file’s modification time. This
lets us see how make deals with files changing:

% make

make: Nothing to be done for `all'.
% touch src/interact.c
% make
cc -c -o build/interact.o src/interact.c -std=c11…
cc -o build/interact build/interact.o build/posn.…
% touch src/posn.h
% make
cc -c -o build/interact.o src/interact.c -std=c11…
cc -c -o build/posn.o src/posn.c -std=c11 -pedant…
cc -o build/interact build/interact.o build/posn.…
cc -c -o build/posn_test.o test/posn_test.c -std=…
cc -o build/posn_test build/posn_test.o build/pos…

17

Make performs minimal rebuilds
The touch command updates a file’s modification time. This
lets us see how make deals with files changing:

% make
make: Nothing to be done for `all'.
%

touch src/interact.c
% make
cc -c -o build/interact.o src/interact.c -std=c11…
cc -o build/interact build/interact.o build/posn.…
% touch src/posn.h
% make
cc -c -o build/interact.o src/interact.c -std=c11…
cc -c -o build/posn.o src/posn.c -std=c11 -pedant…
cc -o build/interact build/interact.o build/posn.…
cc -c -o build/posn_test.o test/posn_test.c -std=…
cc -o build/posn_test build/posn_test.o build/pos…

17

Make performs minimal rebuilds
The touch command updates a file’s modification time. This
lets us see how make deals with files changing:

% make
make: Nothing to be done for `all'.
% touch src/interact.c

% make
cc -c -o build/interact.o src/interact.c -std=c11…
cc -o build/interact build/interact.o build/posn.…
% touch src/posn.h
% make
cc -c -o build/interact.o src/interact.c -std=c11…
cc -c -o build/posn.o src/posn.c -std=c11 -pedant…
cc -o build/interact build/interact.o build/posn.…
cc -c -o build/posn_test.o test/posn_test.c -std=…
cc -o build/posn_test build/posn_test.o build/pos…

17

Make performs minimal rebuilds
The touch command updates a file’s modification time. This
lets us see how make deals with files changing:

% make
make: Nothing to be done for `all'.
% touch src/interact.c
%

make
cc -c -o build/interact.o src/interact.c -std=c11…
cc -o build/interact build/interact.o build/posn.…
% touch src/posn.h
% make
cc -c -o build/interact.o src/interact.c -std=c11…
cc -c -o build/posn.o src/posn.c -std=c11 -pedant…
cc -o build/interact build/interact.o build/posn.…
cc -c -o build/posn_test.o test/posn_test.c -std=…
cc -o build/posn_test build/posn_test.o build/pos…

17

Make performs minimal rebuilds
The touch command updates a file’s modification time. This
lets us see how make deals with files changing:

% make
make: Nothing to be done for `all'.
% touch src/interact.c
% make

cc -c -o build/interact.o src/interact.c -std=c11…
cc -o build/interact build/interact.o build/posn.…
% touch src/posn.h
% make
cc -c -o build/interact.o src/interact.c -std=c11…
cc -c -o build/posn.o src/posn.c -std=c11 -pedant…
cc -o build/interact build/interact.o build/posn.…
cc -c -o build/posn_test.o test/posn_test.c -std=…
cc -o build/posn_test build/posn_test.o build/pos…

17

Make performs minimal rebuilds
The touch command updates a file’s modification time. This
lets us see how make deals with files changing:

% make
make: Nothing to be done for `all'.
% touch src/interact.c
% make
cc -c -o build/interact.o src/interact.c -std=c11…
cc -o build/interact build/interact.o build/posn.…
%

touch src/posn.h
% make
cc -c -o build/interact.o src/interact.c -std=c11…
cc -c -o build/posn.o src/posn.c -std=c11 -pedant…
cc -o build/interact build/interact.o build/posn.…
cc -c -o build/posn_test.o test/posn_test.c -std=…
cc -o build/posn_test build/posn_test.o build/pos…

17

Make performs minimal rebuilds
The touch command updates a file’s modification time. This
lets us see how make deals with files changing:

% make
make: Nothing to be done for `all'.
% touch src/interact.c
% make
cc -c -o build/interact.o src/interact.c -std=c11…
cc -o build/interact build/interact.o build/posn.…
% touch src/posn.h

% make
cc -c -o build/interact.o src/interact.c -std=c11…
cc -c -o build/posn.o src/posn.c -std=c11 -pedant…
cc -o build/interact build/interact.o build/posn.…
cc -c -o build/posn_test.o test/posn_test.c -std=…
cc -o build/posn_test build/posn_test.o build/pos…

17

Make performs minimal rebuilds
The touch command updates a file’s modification time. This
lets us see how make deals with files changing:

% make
make: Nothing to be done for `all'.
% touch src/interact.c
% make
cc -c -o build/interact.o src/interact.c -std=c11…
cc -o build/interact build/interact.o build/posn.…
% touch src/posn.h
%

make
cc -c -o build/interact.o src/interact.c -std=c11…
cc -c -o build/posn.o src/posn.c -std=c11 -pedant…
cc -o build/interact build/interact.o build/posn.…
cc -c -o build/posn_test.o test/posn_test.c -std=…
cc -o build/posn_test build/posn_test.o build/pos…

17

Make performs minimal rebuilds
The touch command updates a file’s modification time. This
lets us see how make deals with files changing:

% make
make: Nothing to be done for `all'.
% touch src/interact.c
% make
cc -c -o build/interact.o src/interact.c -std=c11…
cc -o build/interact build/interact.o build/posn.…
% touch src/posn.h
% make

cc -c -o build/interact.o src/interact.c -std=c11…
cc -c -o build/posn.o src/posn.c -std=c11 -pedant…
cc -o build/interact build/interact.o build/posn.…
cc -c -o build/posn_test.o test/posn_test.c -std=…
cc -o build/posn_test build/posn_test.o build/pos…

17

Make performs minimal rebuilds
The touch command updates a file’s modification time. This
lets us see how make deals with files changing:

% make
make: Nothing to be done for `all'.
% touch src/interact.c
% make
cc -c -o build/interact.o src/interact.c -std=c11…
cc -o build/interact build/interact.o build/posn.…
% touch src/posn.h
% make
cc -c -o build/interact.o src/interact.c -std=c11…
cc -c -o build/posn.o src/posn.c -std=c11 -pedant…
cc -o build/interact build/interact.o build/posn.…
cc -c -o build/posn_test.o test/posn_test.c -std=…
cc -o build/posn_test build/posn_test.o build/pos…

17

