
Linked data structures
CS 211

Winter 2020

Initial code setup

The code in this course is available online. To download a copy
of this lecture into your Unix shell account:
% cd cs211
% curl $URL211/lec/07linked.tgz | tar zxvk
...
% cd 07linked

2

Preliminaries

3

Two views on malloc and free

The client/C view:

• malloc(n) gives you an abstract reference to a shiny,
new, never-before-seen object of n bytes.

• free(p) destroys the object *p, never to be seen again.

The implementation/machine view:

• malloc(n) searches a huuuge array of bytes for an
unused section of size n, makes a note that the section is
now used, and returns its address.

• free(p) marks the section that p refers to unused again.

4

Two views on malloc and free

The client/C view:

• malloc(n) gives you an abstract reference to a shiny,
new, never-before-seen object of n bytes.

• free(p) destroys the object *p, never to be seen again.

The implementation/machine view:

• malloc(n) searches a huuuge array of bytes for an
unused section of size n, makes a note that the section is
now used, and returns its address.

• free(p) marks the section that p refers to unused again.

4

asan is a memory debugger

%

cat oops.c
#include <stdlib.h>
int main() { int i = 6; int x[i]; x[i] = 17; }
% cc -o oops oops.c -fsanitize=address
% ./oops
% valgrind ./oops
…
===
==98261==ERROR: AddressSanitizer: dynamic-stack-buffer-overflow o
n address 0x7ffee68a9ff8 at pc 0x000109355eb4 bp 0x7ffee68a9fb0 s
p 0x7ffee68a9fa8
WRITE of size 4 at 0x7ffee68a9ff8 thread T0

#0 0x109355eb3 in main (oops:x86_64+0x100000eb3)
#1 0x7fff6d6d47fc in start (libdyld.dylib:x86_64+0x1a7fc)

Address 0x7ffee68a9ff8 is located in stack of thread T0
SUMMARY: AddressSanitizer: dynamic-stack-buffer-overflow (oops:x86
_64+0x100000eb3) in main
Shadow bytes around the buggy address:

0x1fffdcd153a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

…

5

asan is a memory debugger

% cat oops.c

#include <stdlib.h>
int main() { int i = 6; int x[i]; x[i] = 17; }
% cc -o oops oops.c -fsanitize=address
% ./oops
% valgrind ./oops
…
===
==98261==ERROR: AddressSanitizer: dynamic-stack-buffer-overflow o
n address 0x7ffee68a9ff8 at pc 0x000109355eb4 bp 0x7ffee68a9fb0 s
p 0x7ffee68a9fa8
WRITE of size 4 at 0x7ffee68a9ff8 thread T0

#0 0x109355eb3 in main (oops:x86_64+0x100000eb3)
#1 0x7fff6d6d47fc in start (libdyld.dylib:x86_64+0x1a7fc)

Address 0x7ffee68a9ff8 is located in stack of thread T0
SUMMARY: AddressSanitizer: dynamic-stack-buffer-overflow (oops:x86
_64+0x100000eb3) in main
Shadow bytes around the buggy address:

0x1fffdcd153a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

…

5

asan is a memory debugger

% cat oops.c
#include <stdlib.h>
int main() { int i = 6; int x[i]; x[i] = 17; }
%

cc -o oops oops.c -fsanitize=address
% ./oops
% valgrind ./oops
…
===
==98261==ERROR: AddressSanitizer: dynamic-stack-buffer-overflow o
n address 0x7ffee68a9ff8 at pc 0x000109355eb4 bp 0x7ffee68a9fb0 s
p 0x7ffee68a9fa8
WRITE of size 4 at 0x7ffee68a9ff8 thread T0

#0 0x109355eb3 in main (oops:x86_64+0x100000eb3)
#1 0x7fff6d6d47fc in start (libdyld.dylib:x86_64+0x1a7fc)

Address 0x7ffee68a9ff8 is located in stack of thread T0
SUMMARY: AddressSanitizer: dynamic-stack-buffer-overflow (oops:x86
_64+0x100000eb3) in main
Shadow bytes around the buggy address:

0x1fffdcd153a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

…

5

asan is a memory debugger

% cat oops.c
#include <stdlib.h>
int main() { int i = 6; int x[i]; x[i] = 17; }
% cc -o oops oops.c -fsanitize=address

% ./oops
% valgrind ./oops
…
===
==98261==ERROR: AddressSanitizer: dynamic-stack-buffer-overflow o
n address 0x7ffee68a9ff8 at pc 0x000109355eb4 bp 0x7ffee68a9fb0 s
p 0x7ffee68a9fa8
WRITE of size 4 at 0x7ffee68a9ff8 thread T0

#0 0x109355eb3 in main (oops:x86_64+0x100000eb3)
#1 0x7fff6d6d47fc in start (libdyld.dylib:x86_64+0x1a7fc)

Address 0x7ffee68a9ff8 is located in stack of thread T0
SUMMARY: AddressSanitizer: dynamic-stack-buffer-overflow (oops:x86
_64+0x100000eb3) in main
Shadow bytes around the buggy address:

0x1fffdcd153a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

…

5

asan is a memory debugger

% cat oops.c
#include <stdlib.h>
int main() { int i = 6; int x[i]; x[i] = 17; }
% cc -o oops oops.c -fsanitize=address
%

./oops
% valgrind ./oops
…
===
==98261==ERROR: AddressSanitizer: dynamic-stack-buffer-overflow o
n address 0x7ffee68a9ff8 at pc 0x000109355eb4 bp 0x7ffee68a9fb0 s
p 0x7ffee68a9fa8
WRITE of size 4 at 0x7ffee68a9ff8 thread T0

#0 0x109355eb3 in main (oops:x86_64+0x100000eb3)
#1 0x7fff6d6d47fc in start (libdyld.dylib:x86_64+0x1a7fc)

Address 0x7ffee68a9ff8 is located in stack of thread T0
SUMMARY: AddressSanitizer: dynamic-stack-buffer-overflow (oops:x86
_64+0x100000eb3) in main
Shadow bytes around the buggy address:

0x1fffdcd153a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

…

5

asan is a memory debugger

% cat oops.c
#include <stdlib.h>
int main() { int i = 6; int x[i]; x[i] = 17; }
% cc -o oops oops.c -fsanitize=address
% ./oops

% valgrind ./oops
…
===
==98261==ERROR: AddressSanitizer: dynamic-stack-buffer-overflow o
n address 0x7ffee68a9ff8 at pc 0x000109355eb4 bp 0x7ffee68a9fb0 s
p 0x7ffee68a9fa8
WRITE of size 4 at 0x7ffee68a9ff8 thread T0

#0 0x109355eb3 in main (oops:x86_64+0x100000eb3)
#1 0x7fff6d6d47fc in start (libdyld.dylib:x86_64+0x1a7fc)

Address 0x7ffee68a9ff8 is located in stack of thread T0
SUMMARY: AddressSanitizer: dynamic-stack-buffer-overflow (oops:x86
_64+0x100000eb3) in main
Shadow bytes around the buggy address:

0x1fffdcd153a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

…

5

asan is a memory debugger

% cat oops.c
#include <stdlib.h>
int main() { int i = 6; int x[i]; x[i] = 17; }
% cc -o oops oops.c -fsanitize=address
% ./oops
%

valgrind ./oops
…
===
==98261==ERROR: AddressSanitizer: dynamic-stack-buffer-overflow o
n address 0x7ffee68a9ff8 at pc 0x000109355eb4 bp 0x7ffee68a9fb0 s
p 0x7ffee68a9fa8
WRITE of size 4 at 0x7ffee68a9ff8 thread T0

#0 0x109355eb3 in main (oops:x86_64+0x100000eb3)
#1 0x7fff6d6d47fc in start (libdyld.dylib:x86_64+0x1a7fc)

Address 0x7ffee68a9ff8 is located in stack of thread T0
SUMMARY: AddressSanitizer: dynamic-stack-buffer-overflow (oops:x86
_64+0x100000eb3) in main
Shadow bytes around the buggy address:

0x1fffdcd153a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

…

5

asan is a memory debugger

% cat oops.c
#include <stdlib.h>
int main() { int i = 6; int x[i]; x[i] = 17; }
% cc -o oops oops.c -fsanitize=address
% ./oops
% valgrind ./oops

…
===
==98261==ERROR: AddressSanitizer: dynamic-stack-buffer-overflow o
n address 0x7ffee68a9ff8 at pc 0x000109355eb4 bp 0x7ffee68a9fb0 s
p 0x7ffee68a9fa8
WRITE of size 4 at 0x7ffee68a9ff8 thread T0

#0 0x109355eb3 in main (oops:x86_64+0x100000eb3)
#1 0x7fff6d6d47fc in start (libdyld.dylib:x86_64+0x1a7fc)

Address 0x7ffee68a9ff8 is located in stack of thread T0
SUMMARY: AddressSanitizer: dynamic-stack-buffer-overflow (oops:x86
_64+0x100000eb3) in main
Shadow bytes around the buggy address:

0x1fffdcd153a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

…

5

asan is a memory debugger

% cat oops.c
#include <stdlib.h>
int main() { int i = 6; int x[i]; x[i] = 17; }
% cc -o oops oops.c -fsanitize=address
% ./oops
% valgrind ./oops
…
===
==98261==ERROR: AddressSanitizer: dynamic-stack-buffer-overflow o
n address 0x7ffee68a9ff8 at pc 0x000109355eb4 bp 0x7ffee68a9fb0 s
p 0x7ffee68a9fa8
WRITE of size 4 at 0x7ffee68a9ff8 thread T0

#0 0x109355eb3 in main (oops:x86_64+0x100000eb3)
#1 0x7fff6d6d47fc in start (libdyld.dylib:x86_64+0x1a7fc)

Address 0x7ffee68a9ff8 is located in stack of thread T0
SUMMARY: AddressSanitizer: dynamic-stack-buffer-overflow (oops:x86
_64+0x100000eb3) in main
Shadow bytes around the buggy address:

0x1fffdcd153a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1fffdcd153d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

…

5

The main event

6

How can we deal with growing data?

• malloc returns a fixed-sized array

• So how does, say, read_line work?
• It reallocates and copies as needed

7

How can we deal with growing data?

• malloc returns a fixed-sized array
• So how does, say, read_line work?

• It reallocates and copies as needed

7

How can we deal with growing data?

• malloc returns a fixed-sized array
• So how does, say, read_line work?
• It reallocates and copies as needed

7

Simplification of read_line
char* read_line(void)
{

size_t cap = 0;
size_t size = 0;
char* buffer = NULL;

for (;;) {
if (size + 1 > cap) {

cap = cap? (2 * cap) : CAPACITY0;
buffer = realloc_or_die(buffer, cap);

}

int c = getchar();

if (c == EOF || c == '\n') {
buffer[size] = '\0';
return buffer;

} else buffer[size++] = (char) c;
}

} 8

The real, slightly more efficient read_line
char* read_line(void)
{

int c = getchar();
if (c == EOF) return NULL;

size_t cap = CAPACITY0;
size_t size = 0;
char* buffer = realloc_or_die(NULL, cap);

for (;;) {
if (c == EOF || c == '\n') {

buffer[size] = '\0';
return buffer;

} else buffer[size++] = (char) c;

c = getchar();

if (size + 1 > cap) {
cap *= 2;
buffer = realloc_or_die(buffer, cap);

}
}

}

9

The alternative

Doubling a big buffer is highly performant.

(Only not growing at
all would be better.)
But it’s not smooth, and it’s not very flexible, so there’s an
alternative: Instead of one big allocation, lots of small
allocations, pointing to each other.

10

The alternative

Doubling a big buffer is highly performant. (Only not growing at
all would be better.)

But it’s not smooth, and it’s not very flexible, so there’s an
alternative: Instead of one big allocation, lots of small
allocations, pointing to each other.

10

The alternative

Doubling a big buffer is highly performant. (Only not growing at
all would be better.)
But it’s not smooth, and it’s not very flexible, so there’s an
alternative: Instead of one big allocation, lots of small
allocations, pointing to each other.

10

Remember this?

; length : [List-of X] -> Nat
; Finds the length of a list.
(define (length lst)

(if (empty? lst)
0
(+ 1 (length (rest lst)))))

(length (cons 2 (cons 3 (cons 4 '())))

11

Remember this?

; length : [List-of X] -> Nat
; Finds the length of a list.
(define (length lst)

(if (empty? lst)
0
(+ 1 (length (rest lst)))))

(length (cons 2 (cons 3 (cons 4 '())))

11

Here’s how it works*

In cons.h:
typedef struct cons_pair* list_t;

In cons.c:

struct cons_pair
{

int car;
struct cons_pair* cdr;

};

12

Here’s how it works*

In cons.h:

typedef struct cons_pair* list_t;

In cons.c:

struct cons_pair
{

int car;
struct cons_pair* cdr;

};

12

Here’s how it works*

In cons.h:

typedef struct cons_pair* list_t;

In cons.c:

struct cons_pair
{

int car;
list_t cdr;

};

12

Here’s how it works*

In cons.h:
typedef struct cons_pair* list_t;

In cons.c:

struct cons_pair
{

int car;
list_t cdr;

};

12

cons == malloc + initialization

#include <stdlib.h>

list_t cons(int first, list_t rest)
{

list_t result = malloc(sizeof *result);
if (result == NULL) … bail out …;

result->car = first;
result->cdr = rest;
return result;

}

13

empty = NULL*

const list_t empty = NULL;

14

Using cons and empty

#include "cons.h"

int main()
{

list_t m = cons(2, cons(3, cons(4, empty)));

// Now what?

car 4
cdr

car 3
cdr

car 2
cdr

m:

15

Using cons and empty

#include "cons.h"

int main()
{

list_t m = cons(2, cons(3, cons(4, empty)));

// Now what?

car 4
cdr

car 3
cdr

car 2
cdr

m:

15

Using cons and empty

#include "cons.h"

int main()
{

list_t m = cons(2, cons(3, cons(4, empty)));
// Now what?

car 4
cdr

car 3
cdr

car 2
cdr

m:

15

We need predicates and selectors

bool is_empty(list_t lst) { return lst == NULL; }

bool is_cons(list_t lst) { return lst != NULL; }

int first(list_t lst)
{

assert(lst);
return lst->car;

}

list_t rest(list_t lst)
{

assert(lst);
return lst->cdr;

}

16

A whole list program

, or is it?

#include "cons.h"
#include <stdio.h>

int main()
{

list_t m = cons(2, cons(3, cons(4, empty)));

while (is_cons(m)) {
printf("%d\n", first(m));
m = rest(m);

}
}

17

A whole list program, or is it?

#include "cons.h"
#include <stdio.h>

int main()
{

list_t m = cons(2, cons(3, cons(4, empty)));

while (is_cons(m)) {
printf("%d\n", first(m));
m = rest(m);

}
}

17

List fun, 111 style

#include "cons.h"

size_t list_len(list_t lst)
{

return is_empty(lst)
? 0
: 1 + list_len(rest(lst));

}

(define (length lst)
(if (empty? lst)

0
(+ 1 (length (rest lst)))))

18

List fun, 111 style

#include "cons.h"

size_t list_len(list_t lst)
{

return is_empty(lst)
? 0
: 1 + list_len(rest(lst));

}

(define (length lst)
(if (empty? lst)

0
(+ 1 (length (rest lst)))))

18

List fun, 211 style

(define (length-acc acc lst)
(if (empty? lst) acc

(length-acc (+ 1 acc) (rest lst))))
(define (length lst) (length-acc 0 lst))

size_t list_len(list_t lst)
{

size_t result = 0;
while (is_cons(lst)) {

lst = rest(lst);
++result;

}
return result;

}

19

List fun, 211 style

(define (length-acc acc lst)
(if (empty? lst) acc

(length-acc (+ 1 acc) (rest lst))))
(define (length lst) (length-acc 0 lst))

size_t list_len(list_t lst)
{

size_t result = 0;
while (is_cons(lst)) {

lst = rest(lst);
++result;

}
return result;

}

19

List fun, 211 style

(define (length-acc acc lst)
(if (empty? lst) acc

(length-acc (+ 1 acc) (rest lst))))
(define (length lst) (length-acc 0 lst))

size_t list_len(list_t lst)
{

size_t result = 0;
while (is_cons(lst)) {

lst = rest(lst);
++result;

}
return result;

}

19

Freeing a list, recursively
Back to cons.c…

void uncons_all(list_t lst)

//Fully broken

{
if (lst) {

free(lst);
uncons_all(lst->cdr);

}
}

void uncons_all(list_t lst)

//Semi-broken, but

{

//go with it for now

if (lst) {
uncons_all(lst->cdr);
free(lst);

}
}

20

Freeing a list, recursively
Back to cons.c…
void uncons_all(list_t lst)

//Fully broken

{
if (lst) {

free(lst);
uncons_all(lst->cdr);

}
}

void uncons_all(list_t lst)

//Semi-broken, but

{

//go with it for now

if (lst) {
uncons_all(lst->cdr);
free(lst);

}
}

20

Freeing a list, recursively
Back to cons.c…
void uncons_all(list_t lst) //Fully broken
{

if (lst) {
free(lst);
uncons_all(lst->cdr);

}
}

void uncons_all(list_t lst) //Semi-broken, but
{ //go with it for now

if (lst) {
uncons_all(lst->cdr);
free(lst);

}
}

20

What’s wrong with this program?

#include "cons.h"

int main()
{

list_t m = cons(3, cons(4, empty));
list_t n = rest(m);
uncons_all(m);
printf("%d\n", first(n));
uncons_all(n);

}

21

What about this program?

#include "cons.h"

int main()
{

list_t m = cons(3, cons(4, empty));
list_t n = cons(2, m);
printf("%d\n", first(n));
uncons_all(n);
printf("%d\n", first(m));
uncons_all(m);

}

Idea: Owners and borrowers.

22

What about this program?

#include "cons.h"

int main()
{

list_t m = cons(3, cons(4, empty));
list_t n = cons(2, m);
printf("%d\n", first(n));
uncons_all(n);
printf("%d\n", first(m));
uncons_all(m);

}

Idea: Owners and borrowers.

22

Ownership protocol

• The owner of a heap-allocated object is responsible for
deallocating it. (No one else may.)

• When passing a pointer, it may or may not transfer
ownership:
▶ If it does, then the caller must pass a heap-allocated object

that it owns, giving up ownership.
▶ If it does not, then the caller need not own the object, as the

callee merely borrows it, and no ownershp changes.
The only way to tell which is which is to read the contract.

• Functions can also return either owned or borrowed
pointers.

23

Ownership protocol

• The owner of a heap-allocated object is responsible for
deallocating it. (No one else may.)

• When passing a pointer, it may or may not transfer
ownership

:
▶ If it does, then the caller must pass a heap-allocated object

that it owns, giving up ownership.
▶ If it does not, then the caller need not own the object, as the

callee merely borrows it, and no ownershp changes.
The only way to tell which is which is to read the contract.

• Functions can also return either owned or borrowed
pointers.

23

Ownership protocol

• The owner of a heap-allocated object is responsible for
deallocating it. (No one else may.)

• When passing a pointer, it may or may not transfer
ownership:
▶ If it does, then the caller must pass a heap-allocated object

that it owns, giving up ownership.

▶ If it does not, then the caller need not own the object, as the
callee merely borrows it, and no ownershp changes.

The only way to tell which is which is to read the contract.
• Functions can also return either owned or borrowed

pointers.

23

Ownership protocol

• The owner of a heap-allocated object is responsible for
deallocating it. (No one else may.)

• When passing a pointer, it may or may not transfer
ownership:
▶ If it does, then the caller must pass a heap-allocated object

that it owns, giving up ownership.
▶ If it does not, then the caller need not own the object, as the

callee merely borrows it, and no ownershp changes.

The only way to tell which is which is to read the contract.
• Functions can also return either owned or borrowed

pointers.

23

Ownership protocol

• The owner of a heap-allocated object is responsible for
deallocating it. (No one else may.)

• When passing a pointer, it may or may not transfer
ownership:
▶ If it does, then the caller must pass a heap-allocated object

that it owns, giving up ownership.
▶ If it does not, then the caller need not own the object, as the

callee merely borrows it, and no ownershp changes.
The only way to tell which is which is to read the contract.

• Functions can also return either owned or borrowed
pointers.

23

Ownership protocol

• The owner of a heap-allocated object is responsible for
deallocating it. (No one else may.)

• When passing a pointer, it may or may not transfer
ownership:
▶ If it does, then the caller must pass a heap-allocated object

that it owns, giving up ownership.
▶ If it does not, then the caller need not own the object, as the

callee merely borrows it, and no ownershp changes.
The only way to tell which is which is to read the contract.

• Functions can also return either owned or borrowed
pointers.

23

Ownership: Major points

• Every heap object has an owner.

• Owners can and must free the objects they own.
• Non-owners must not free the objects they don’t own.
• Ownership is imaginary.

24

Ownership: Major points

• Every heap object has an owner.
• Owners can and must free the objects they own.

• Non-owners must not free the objects they don’t own.
• Ownership is imaginary.

24

Ownership: Major points

• Every heap object has an owner.
• Owners can and must free the objects they own.
• Non-owners must not free the objects they don’t own.

• Ownership is imaginary.

24

Ownership: Major points

• Every heap object has an owner.
• Owners can and must free the objects they own.
• Non-owners must not free the objects they don’t own.
• Ownership is imaginary.

24

Ownership in cons.h
// Takes ownership of `rest`, returns owned list:
list_t cons(int first, list_t rest);

// Borrows `lst`, just for call:
bool is_empty(list_t lst), is_cons(list_t lst);
int first(list_t lst);

// Borrows `lst` and returns borrowed sub-part:
list_t rest(list_t lst);

// Takes ownership of `lst` (and all it points to):
void uncons_all(list_t lst);

// Takes ownership of `lst`, and returns owned
// version of `rest(lst)`:
list_t uncons_one(list_t lst);

25

Ownership in cons.h
// Takes ownership of `rest`, returns owned list:
list_t cons(int first, list_t rest);

// Borrows `lst`, just for call:
bool is_empty(list_t lst), is_cons(list_t lst);
int first(list_t lst);

// Borrows `lst` and returns borrowed sub-part:
list_t rest(list_t lst);

// Takes ownership of `lst` (and all it points to):
void uncons_all(list_t lst);

// Takes ownership of `lst`, and returns owned
// version of `rest(lst)`:
list_t uncons_one(list_t lst);

25

Ownership in cons.h
// Takes ownership of `rest`, returns owned list:
list_t cons(int first, list_t rest);

// Borrows `lst`, just for call:
bool is_empty(list_t lst), is_cons(list_t lst);
int first(list_t lst);

// Borrows `lst` and returns borrowed sub-part:
list_t rest(list_t lst);

// Takes ownership of `lst` (and all it points to):
void uncons_all(list_t lst);

// Takes ownership of `lst`, and returns owned
// version of `rest(lst)`:
list_t uncons_one(list_t lst);

25

Ownership in cons.h
// Takes ownership of `rest`, returns owned list:
list_t cons(int first, list_t rest);

// Borrows `lst`, just for call:
bool is_empty(list_t lst), is_cons(list_t lst);
int first(list_t lst);

// Borrows `lst` and returns borrowed sub-part:
list_t rest(list_t lst);

// Takes ownership of `lst` (and all it points to):
void uncons_all(list_t lst);

// Takes ownership of `lst`, and returns owned
// version of `rest(lst)`:
list_t uncons_one(list_t lst);

25

Ownership in cons.h
// Takes ownership of `rest`, returns owned list:
list_t cons(int first, list_t rest);

// Borrows `lst`, just for call:
bool is_empty(list_t lst), is_cons(list_t lst);
int first(list_t lst);

// Borrows `lst` and returns borrowed sub-part:
list_t rest(list_t lst);

// Takes ownership of `lst` (and all it points to):
void uncons_all(list_t lst);

// Takes ownership of `lst`, and returns owned
// version of `rest(lst)`:
list_t uncons_one(list_t lst);

25

Implementations of unconsing
list_t uncons_one(list_t lst)
{

free(lst);
return lst->cdr;

//UB!

}

list_t uncons_one(list_t lst)
{

list_t next = lst->cdr;
free(lst);
return next;

}

void uncons_all(list_t lst)
{

while (lst) lst = uncons_one(lst);
}

26

Implementations of unconsing
list_t uncons_one(list_t lst)
{

free(lst);
return lst->cdr; //UB!

}

list_t uncons_one(list_t lst)
{

list_t next = lst->cdr;
free(lst);
return next;

}

void uncons_all(list_t lst)
{

while (lst) lst = uncons_one(lst);
}

26

Implementations of unconsing
list_t uncons_one(list_t lst)
{

free(lst);
return lst->cdr; //UB!

}

list_t uncons_one(list_t lst)
{

list_t next = lst->cdr;
free(lst);
return next;

}

void uncons_all(list_t lst)
{

while (lst) lst = uncons_one(lst);
}

26

Implementations of unconsing
list_t uncons_one(list_t lst)
{

free(lst);
return lst->cdr; //UB!

}

list_t uncons_one(list_t lst)
{

list_t next = lst->cdr;
free(lst);
return next;

}

void uncons_all(list_t lst)
{

while (lst) lst = uncons_one(lst);
}

26

The fixed program

#include "cons.h"

int main()
{

list_t m = cons(3, cons(4, empty));
list_t n = uncons_one(m);
printf("%d\n", first(n));
uncons_all(n);

}

27

The fixed program

#include "cons.h"

int main()
{

list_t m = cons(3, cons(4, empty));
list_t n = uncons_one(m);
printf("%d\n", first(n));
uncons_all(n);

}

27

– Next time: RAII –

28

Notes

* Lies

29

