Run-Time Polymorphism

CS 211

Winter 2020
Definition

polymorphism, *n.* *(from poly- + -morphism)*

1. The ability to assume different forms or shapes.
2. *(biology)* The coexistence, in the same locality, of two or more distinct forms independent of sex, not connected by intermediate gradations, …
3. *(object-oriented programming)* The feature pertaining to the dynamic treatment of data elements based on their type, allowing for an instance of a method to have several definitions.
4. *(mathematics, type theory)* The property of certain typed formal systems of allowing for the use of type variables and binders/quantifiers over those type variables; …
5. *(crystallography)* …
6. *(genetics)* …
let mystery xs0 =
 let rec loop acc xs =
 match xs with
 | [] -> acc
 | x :: xs' -> loop (x :: acc) xs'
 in loop [] xs0
ML stands for meta-language

```ml
let mystery xs0 =  
  let rec loop acc xs =  
    match xs with  
    | [] -> acc  
    | x :: xs' -> loop (x :: acc) xs'  
  in loop [] xs0
```
Ad-hoc polymorphism

bool test(int v, int lo, int hi)
{
 return lo <= v && v < hi;
}

bool test(double v, double lo, double hi)
{
 return low <= v && v <= hi;
}
Generic = parametric + ad-hoc

template <class T>
void filter(std::vector<T>& v, T lo, T hi) {
 size_t dst = 0;

 for (T& x : v)
 if (test(x, lo, hi))
 v[dst++] = x;

 v.resize(v.size() - dst);
}
trait Testable {
 fn test(&self, lo: &Self, hi: &Self) -> bool;
}

impl Testable for f64 {
 fn test(&self, lo: &f64, hi: &f64) -> bool {
 lo <= self && self <= hi
 }
}

fn filter<T: Testable>(
 v: &mut Vec<T>, lo: &T, hi: &T) {
 let mut dst = 0;
 for i in 0 .. v.len() {
 if v[i].test(lo, hi) {
 v.swap(dst, i);
 dst += 1;
 }
 }
 for _ in dst .. v.len() {
 v.pop();
 }
}
Message/method polymorphism

Number subclass: Complex [
 | realpart imagpart |

 "constructor and setter omitted..."

 real [^realpart]
 imag [^imagpart]

 + other [
 ^Complex real: (realpart + other real)
 imag: (imagapart + other imag)
]

 "etc..."]
Subtype polymorphism in theory

A type τ is a *subtype* of a type σ (notation: τ is-a σ) iff every value of type τ is also a value of type σ.

(This is known as the Liskov Substitution Principle. Restated: A function that accepts an object of type σ must work on objects of type τ.)

Possible examples:
- int is-a double?
- Rectangle is-a Shape?
- Square is-a Rectangle?
- $\text{vector<Rectangle}>$ is-a vector<Shape>?
- $\text{bool}@(*\text{Shape})$ is-a $\text{bool}@(*\text{Rectangle})$?
A type \(\tau \) is a **subtype** of a type \(\sigma \) (notation: \(\tau \text{ is-a } \sigma \)) iff every value of type \(\tau \) is also a value of type \(\sigma \).

(This is known as the *Liskov Substitution Principle*. Restated: A function that accepts an object of type \(\sigma \) must work on objects of type \(\tau \).)
A type τ is a subtype of a type σ (notation: τ is-a σ) iff every value of type τ is also a value of type σ.

(This is known as the Liskov Substitution Principle. Restated: A function that accepts an object of type σ must work on objects of type τ.)

Possible examples:

- int is-a double?
Subtype polymorphism in theory

A type τ is a subtype of a type σ (notation: τ is-a σ) iff every value of type τ is also a value of type σ.

(This is known as the Liskov Substitution Principle. Restated: A function that accepts an object of type σ must work on objects of type τ.)

Possible examples:

- Integer is-a Real
Subtype polymorphism in theory

A type \(\tau \) is a subtype of a type \(\sigma \) (notation: \(\tau \) is-a \(\sigma \)) iff every value of type \(\tau \) is also a value of type \(\sigma \).

(This is known as the *Liskov Substitution Principle*. Restated: A function that accepts an object of type \(\sigma \) must work on objects of type \(\tau \).)

Possible examples:

- Integer is-a Real
- Rectangle is-a Shape?
A type τ is a subtype of a type σ (notation: τ is-a σ) iff every value of type τ is also a value of type σ.

(This is known as the Liskov Substitution Principle. Restated: A function that accepts an object of type σ must work on objects of type τ.)

Possible examples:

- Integer is-a Real
- Rectangle is-a Shape
- Square is-a Rectangle
Subtype polymorphism in theory

A type τ is a subtype of a type σ (notation: τ is-a σ) iff every value of type τ is also a value of type σ.

(This is known as the Liskov Substitution Principle. Restated: A function that accepts an object of type σ must work on objects of type τ.)

Possible examples:

- Integer is-a Real
- Rectangle is-a Shape
- Square is-a Rectangle
Subtype polymorphism in theory

A type \(\tau \) is a subtype of a type \(\sigma \) (notation: \(\tau \text{ is-a } \sigma \)) iff every value of type \(\tau \) is also a value of type \(\sigma \).

(This is known as the Liskov Substitution Principle. Restated: A function that accepts an object of type \(\sigma \) must work on objects of type \(\tau \).)

Possible examples:

- Integer \textbf{is-a} Real
- Rectangle \textbf{is-a} Shape
- Square \textbf{is-a} Rectangle
- \texttt{vector<Rectangle>} \textbf{is-a} \texttt{vector<Shape>}

8
Subtype polymorphism in theory

A type \(\tau \) is a subtype of a type \(\sigma \) (notation: \(\tau \text{ is-a } \sigma \)) \iff \ every value of type \(\tau \) is also a value of type \(\sigma \).

(This is known as the Liskov Substitution Principle. Restated: A function that accepts an object of type \(\sigma \) must work on objects of type \(\tau \).)

Possible examples:

- Integer \text{ is-a } Real
- Rectangle \text{ is-a } Shape
- Square \text{ is-a } Rectangle
- \text{vector<Rectangle> is-a vector<Shape>
Subtype polymorphism in theory

A type τ is a subtype of a type σ (notation: τ is-a σ) iff every value of type τ is also a value of type σ.

(This is known as the Liskov Substitution Principle. Restated: A function that accepts an object of type σ must work on objects of type τ.)

Possible examples:

- Integer is-a Real
- Rectangle is-a Shape
- Square is-a Rectangle
- vector<Rectangle> is-a vector<Shape>
- bool (*)(Shape) is-a bool (*)(Rectangle)?
Subtype polymorphism in theory

A type τ is a subtype of a type σ (notation: τ is-a σ) iff every value of type τ is also a value of type σ.

(This is known as the Liskov Substitution Principle. Restated: A function that accepts an object of type σ must work on objects of type τ.)

Possible examples:

- Integer is-a Real
- Rectangle is-a Shape
- Square is-a Rectangle
- vector<Rectangle> is-a vector<Shape>
- bool (*)(Rectangle) is-a bool (*)(Shape)
Subtype polymorphism in theory

A type τ is a subtype of a type σ (notation: τ is-a σ) iff every value of type τ is also a value of type σ.

(This is known as the Liskov Substitution Principle. Restated: A function that accepts an object of type σ must work on objects of type τ.)

Possible examples:

- `Integer` is-a `Real`
- `Rectangle` is-a `Shape`
- `Square` is-a `Rectangle`
- `vector<Rectangle>` is-a `vector<Shape>`
- `bool (*)(Rectangle)` is-a `bool (*)(Shape)`
Subtype polymorphism in C++

```cpp
struct Base
{
};

struct Derived : Base
{
};
```

• Derived* is-a Basic*,
• Derived& is-a Base&,
• and likewise for const versions, but
• Derived is-a Base – why not?
Subtype polymorphism in C++

```cpp
struct Base
{
};

struct Derived : Base
{
};
```

Then:

- Derived* is-a Basic*,
- Derived& is-a Base&, and
- and likewise for const versions, but
- Derived is-a Base – why not?
Adding “methods”

```cpp
struct Base
{  int f() { return 0; } }

struct Derived : Base
{  int f() { return 1; } }
```
Adding “methods”

```cpp
struct Base
{   int f() { return 0; } }

struct Derived : Base
{   int f() { return 1; } }

TEST_CASE("direct")
{
    Base b;
    Derived d;
    CHECK( b.f() == 0 );
    CHECK( d.f() == 1 );
}
```
Adding “methods”

```cpp
struct Base
{ int f() { return 0; } };

struct Derived : Base
{ int f() { return 1; } };

int g(Base& b) { return b.f(); }

TEST_CASE("via reference")
{
    Base b;
    Derived d;
    CHECK( g(b) == 0 );
    CHECK( g(d) == 0 ); // ???
}
```
Static versus dynamic dispatch

To determine which function to call:

- Static dispatch uses the static type of the variable
- Dynamic dispatch uses the run-time class of the object
Static versus dynamic dispatch

To determine which function to call:
- Static dispatch uses the static type of the variable
- Dynamic dispatch uses the run-time class of the object

To get dynamic dispatch in C++, a function must be virtual
Introducing virtual functions

```cpp
struct Base
{ virtual int f() { return 0; } };

struct Derived : Base
{ int f() override { return 1; } };
```

```cpp
TEST_CASE("via reference")
{
    Base b;
    Derived d;
    CHECK( g(b) == 0 );
    CHECK( g(d) == 1 );
}
```
Introducing virtual functions

```cpp
struct Base {
    virtual int f() { return 0; }
};

struct Derived : Base {
    int f() override { return 1; }
};

int g(Base& b) { return b.f(); }

TEST_CASE("via reference")
{
    Base b;
    Derived d;
    CHECK( g(b) == 0 );
    CHECK( g(d) == 1 );
}
```
— To CLion! —