Purpose

The goal of this assignment is to get you programming in C, including simple I/O, separate compilation, and `assert`-based testing.

Preliminaries

Login to the server of your choice and `cd` to the directory where you keep your CS 211 work. Then download and unarchive the starter code, and change into the project directory:

```bash
% cd cs211
% curl $HW211/hw01.tgz | tar zvxk
% cd hw01
```

You can check that you have correctly downloaded and configured everything by building and running the tests:

```bash
% make test
c -c -o test/test_circle.o test/test_circle.c -std=c...
c -c -o src/circle.o src/circle.c -std=c11 -pedantic...
c -o test_circle test/test_circle.o src/circle.o -std...
./test_circle
test_tangent... ok.
test_not_overlapped... ok.
%
```

The build and tests should complete successfully. This doesn’t mean that the code is correct, but that the tests are inadequate.

Orientation

In this project, you will write:

- a tiny computational geometry library (`src/circle.h` and `src/circle.c`),
- a tiny client program that uses it (`src/overlapped.c`), and
- some tests for the library (`test/test_circle.c`).

This homework assignment must be completed on Linux by logging into a Linux server or one of the Wilkinson Lab machines. Each time you login to work on CS 211, you need to run the `dev` command (as set up in Lab 1).
Type definitions and function signatures for the library are provided for you in `src/circle.h`; since the grading tests expect to interface with your code via this header file, **you must not modify `src/circle.h` in any way.** All of your code will be written in the three `.c` files.

Make targets

The project also provides a Makefile with several targets:

<table>
<thead>
<tr>
<th>target</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>builds everything * &</td>
</tr>
<tr>
<td>test</td>
<td>builds and runs the tests &</td>
</tr>
<tr>
<td>test_circle</td>
<td>builds (but doesn’t run) the tests</td>
</tr>
<tr>
<td>overlapped</td>
<td>builds the client program</td>
</tr>
<tr>
<td>clean</td>
<td>removes all build products &</td>
</tr>
</tbody>
</table>

* default & phony

Specifications

The project comprises two functional components, which are specified in the next two subsections.

The circle library

The *circle* library defines one **struct** type and three functions, as follows:

- The circle structure type represents a circle positioned on a Euclidean plane in terms its center (x and y coordinates) and its radius.

- Function `valid_circle(struct circle c)` returns a **bool** indicating whether circle `c` is *valid*. A circle is valid if and only if its radius is positive.

- Function `read_circle(void)` parses a **struct** circle from the standard input and returns it. It should expect the values of the three fields in order: x, y, radius.

Exceptional cases: The returned circle must be fully initialized even if `scanf()` fails due to bad or end of input. If the input ends or is malformed, `read_circle()` returns a circle with center (0.0, 0.0) and radius −1.0.

- Function `overlapped_circles(struct circle, struct circle)` returns a **bool** indicating whether the two given circles overlap.
Circles are considered to overlap only if they contain some area in common, not if they are merely tangent to each other.

The overlapped client program

The overlapped client program reads a first ("target") circle. If there is an error in reading the target circle, the program terminates with an exit code of 1 to indicate an error.

Then the program reads as many subsequent ("candidate") circles as are provided by the user; for each valid circle read after the target circle, it prints "overlapped\n" if the candidate circle overlaps the target, or "not_overlapped\n" if not. If the program reads an invalid candidate circle, then it terminates with an exit code of 0 to indicate success, printing nothing.

The program does not print anything else.

Here are two examples of running overlapped:

```
% ./overlapped
0 0 5
0 2 1
overlapped
0 10 1
not overlapped
2020 211 -1
% 
```

Hints

Definition of overlap for circles

Two circles overlap if the distance between their centers is less than the sum of their radii.

Strategy for the read_circle function

First define a struct circle variable, without initializer, to hold the function’s result. Then, try to initialize its three fields using scanf(). If scanf() is unable to convert all three doubles as indicated by its result

It’s a bug if your output differs from the specification.

Reading documentation effectively can depend on understanding typesetting conventions. In the transcripts on the left, the bold text is what the user types, and the medium weight text is what the computer responds with. Your actual prompt will probably differ from %, which is a convention for printing Unix shell prompts in documentation.

You don’t need sqrt() to do this, because this statement is equivalent: Two circles overlap if the square of the distance between their centers is less than the square of the sum of their radii.
value, then initialize the `struct` circle to the invalid state (0.0, 0.0, -1.0) instead (per the specification above). Then, whether or not the input succeeded, return the `struct` circle.

Algorithm for the overlapped program

Here is an algorithm you can use in `src/overlapped.c`:

1. Define a `struct` circle variable to hold the target circle, and initialize it to the result of calling `read_circle()`.

2. If the target circle is invalid according to `valid_circle()`, exit with an error code of 1.

3. Repeat indefinitely:

 (a) Define a `struct` circle variable to hold the candidate circle, and initialize it to the result of calling `read_circle()`.

 (b) If the candidate circle is invalid according to `valid_circle()`, exit with an error code of 0.

 (c) Use `overlapped_circles()` in the condition of an `if-else` statement to check whether the target circle overlaps the candidate circle and print the correct message in either case.

To get an infinite loop that repeats some statements, use a `for` loop with empty condition:

```c
for (;;) {
    // Statements to repeat go here.
}
```

Deliverables and evaluation

For this homework you must:

1. Implement the specification for the `circle` library from the previous section in `src/circle.c`.

2. Implement the specification for the `overlapped` client program from the previous section in `src/overlapped.c`.

3. Add more test cases for the `overlapped_circles` function provided by the `circle` library in `test/test_circle.c`.

 In particular, file `test/test_circle.c` already contains two test cases, `test_tangent` and `test_not_overlapped`, both of which are called from `main`. Your job is to add two more test cases, demonstrating that:
• `overlapped_circles` returns `true` given different but overlapping circles, and
• `overlapped_circles` returns `true` given the same circle for both arguments.

Grading will be based on:

• the correctness of your implementations with respect to the specifications,
• the presence of the two required test cases, and
• adherence to the CS 211 Style Manual.

Submission

Homework submission and grading will use the GSC grading server. You must include any files that you create or change. For this homework, that will include `src/circle.c`, `src/overlapped.c`, and `test/test_circle.c`. (You should not need to modify `Makefile` and you must not modify `src/circle.h`.)

Submit using the command-line GSC client `gsc(1)`. Instructions are available in the `submit211(7)` manual page on the Unix login and lab machines. To view the manual page, run:

```bash
% man submit211
```