CS 214 Fall 2019

Homework 3: Hash Table

Code due: Tue., Oct. 22 at 11:59 PM (via GSC)
Self-eval due: Thu., Oct. 24 at 11:59 PM (on GSC)

You may work on your own or with one (1) partner.

The hash table is a data structure that implements the dictionary abstract data
type, with expected O(1) time for lookup and insert operations. There are two
main ways to organize a hash table: open addressing and separate chaining.
In this homework assignment, you will implement a separate chaining hash
table.

In hashtable. rktﬂ, I’ve supplied headers for the methods that you’ll need
to write, along with one sorry excuse for a test. Your job is to fill in the
methods and write a bunch more tests.

Orientation

The starter code defines an interface, DICT, that your hash table will imple-
ment:

interface DICTI[K, V]:
def len(self) -> nat?
def mem?(self, key: K) -> bool?
def get(self, key: K) -> V
def put(self, key: K, value: V) -> NoneC
def del(self, key: K) -> NoneC

That is, a DICT, for some key contract K and some value contract V, specifies
five methods:

e len returns the number of associations in the dictionary.
o mem? returns whether a particular key is present in the dictionary.

» get returns the value associated with a key if the key is present, or calls
error if the key is absent.

"https://bit.1ly/2VUzcUF

https://bit.ly/2VUzcUF
https://bit.ly/2VUzcUF

CS 214 Fall 2019

e put associates a key with a value in the dictionary, replacing the key’s
previous value if already present.

« del removes a key and its associated value if the key present and has
no effect if the key is absent.

The starter code also defines the representation (fields) and initializer method
for the HashTable class:

class HashTable[K, V] (DICT):

let _data
let _size
let _hasher

def __init__(self, nbuckets: nat?, hasher: HASHER!):
self. data = [None; nbuckets]
self._size 0
self. hasher hasher

Field _data is the table itself, a vector of buckets, where each bucket is a
singly-linked list of key—value associations. Field _size stores the number
of associations in the hash table (which is not the same as the number of
buckets, self._data.len()). And field _hasher contains the hasher, which
you’ll need to use to hash keys into integers; it’s in the form of an object with
a .hash method.

The __init__ method for HashTable initializes _data to a vector of size
nbuckets filled with empty linked lists, _size to 0, and _hasher to the
supplied hasher object.

The linked list in each bucket is made out of a single None preceded by some
number of cons structs, defined as follows:

struct cons:
let car
let cdr

(These structs are not defined in the starter code directly, but rather imported
from the standard library with the line import cons.)

CS 214 Fall 2019

The elements of each linked list are pairs that associate each key with its

value:

struct assoc:

let key
let value

Here’s an example of a bucket containing two associations:

let EX _BUCKET = cons(assoc('hello', 5),

cons (assoc('goodbye', 7),
None))

Your task

Your job is to complete the definition of the HashTable class by implementing
the five methods of the DICT interface:

1.

HashTable.len returns the number of mappings in the hash table,
which is just self._size.

HashTable.mem? searches the table for a key as follows. First, it hashes
the key using self. hasher.hash; the resulting hash code modulo
self._data.len() (the number of buckets) tells you which bucket to
look in. Then, it scans the list in that bucket and returns whether any
of the associations contains the given key.

HashTable.get, like HashTable.mem?, hashes the key and scans the
indicated bucket for an association with that key. If found, it returns
the value of the association; if not, it calls error.

HashTable.put also hashes the key to find out which bucket to look
in. If the key is already in the appropriate bucket, then it replaces
the associated value with the given value; otherwise, it conses a new
association onto the appropriate bucket’s association list. In the latter
case but not the former, it also increments the size.

HashTable.del also hashes the key to find out which bucket to look
in. Then it searches the linked list in the appropriate bucket, and if an

CS 214 Fall 2019

association with the given key is present, it removes that association
and decrements the size.

Ordinarily hash tables are dynamically sized, which means that the
put method is responsible for maintaining a reasonable load factor
by growing the table and rehashing as needed. For this assignment,
however, you do not need to implement growing and rehashing—we will
assume that the initially allocated capacity suffices.

Testing

I've provided two different hash functions for testing your hash table:

e FirstCharHasher () constructs a hasher object whose hash method
takes non-empty strings to the integer codes of their first characters.

o SboxHash64 () constructs a randomly-generated hasher object whose
hash method enjoys good properties.

The former is a bad hash function, but it can be useful for debugging because
it’s predictable. For example, the ASCII code for lowercase letter ‘a’ is 97, so
if you define h as a FirstCharHasher then h.hash('apple') will return 97.
That means that if your hash table contains the key 'apple' then it belongs
in the bucket at self. datal[97 % self. data.len()].

The latter class, SboxHash64, generates a good hash function that is suitable
for storing a very large number of associations. You should use the sbox
hasher for testing. To create a hash table that uses an sbox hasher, you need
to invoke the HashTable constructor as follows:

let h = HashTable(100, SboxHash64())

One test is included in the starter code, but it’s not nearly comprehensive,
and you need to write more.

CS 214 Fall 2019

Deliverables

The provided file hashtable. rktEL containing
o definitions of the five methods described above, and

« sufficient tests to be confident of your code’s correctness.

Zhttps://bit.1y/2VUzcUF

https://bit.ly/2VUzcUF
https://bit.ly/2VUzcUF

