
CS 214 Fall 2019

Homework 5: Binary Heap
Code due: Tue., Nov. 12 at 11:59 PM (via GSC)

Self-eval due: Thu., Nov. 14 at 11:59 PM (on GSC)
You may work on your own or with one (1) partner.

In this assignment, you will implement a fixed-size binary heap. The structure
of the heap is already defined for you in binheap.rkt1. The elements of the
heap are stored in a DSSL2 vector. Each heap also contains a comparison
function for ordering the elements of the heap, so that your implementation
can support heaps of integers, heaps of strings, heaps of whatits, heaps of
sporkles, etc.

Interface overview

Your BinHeap class must implement the priority queue abstract data type, as
specified by this DSSL2 interface:

interface PRIORITY_QUEUE[X]:

def len(self) -> nat?

def find_min(self) -> X

def remove_min(self) -> NoneC

def insert(self, element: X) -> NoneC

That is, the PRIORITY_QUEUE interface is parameterized by an element type X,
and declares four operations:

• The len method returns the number of elements in the priority queue.

• The find_min method returns the “smallest”2 element of the priority
queue, or calls error if it is empty. (If there’s more than one element
tied for smallest then it doesn’t matter which of those is returned, so
long as find_min is deterministic.)

1https://bit.ly/2NQz98K
2Through, when we say “smallest” we mean “smallest according to the ordering function

the heap was created with,” which may well implement some other order entirely. When
the ordering function is greater-than then “smallest” actually means largest.

1

https://bit.ly/2NQz98K
https://bit.ly/2NQz98K


CS 214 Fall 2019

• The remove_min method removes the smallest element of the priority
queue, or calls error if it is empty. (If there is more than one element
tied for smallest, then remove_min must be consistent with find_min,
in the sense that it removes the same element that find_min would
return.)

• The insert method takes a new element and adds it to the priority
queue if there’s sufficient space for an additional element; if there isn’t
room then it calls error instead.

DSSL2 interfaces specify how objects can be used, but not how they are
constructed. To understand that, we must describe the constructor of the
BinHeap class. Like the PRIORITY_QUEUE interface that it implements, the
BinHeap class is parameterized by an element type X; its constructor takes
two parameters, capacity and lt?, as seen here:

class BinHeap[X] (PRIORITY_QUEUE):

# ... fields omitted ...

def __init__(self, capacity, lt?):

# ... initialization omitted ...

# ... lots more ...

The value given for capacity must be a natural number, which will be the
size of the vector used to store the elements. Thus, capacity determines the
number of elements that can be stored before the insert method signals an
error.

The purpose of the lt? parameter is to allow clients of the BinHeap class to
specify what elements they want considered “least,” that is, what ordering
the heap should implement. A client does so by providing a function for the
heap to use for comparing elements when restoring its invariant. If the client
wants a min-heap then it will pass an actual less-than function for lt?, and
that will cause the heap to return its smallest elements first; but if the client
wants a max-heap then it can pass a greater-than function as lt? and it will
get a largest-first heap. If a client wants some other order, or if it wants a
bespoke element type, then it can provide a comparison function for that.

In general, the value given for lt? must be a binary predicate for comparing
two elements of type X. In particular, given two elements (i.e., Xs) a and
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b, lt?(a, b) must return True if a is to be considered less than b for the
purposes of ordering the heap, and it must return False if a is to be considered
greater than or equal to b. The BinHeap class stores this function in a field
and uses it to compare elements and maintain its invariant.

Thus, when constructing a heap, we need to provide an heap ordering predicate
appropriate for the intended element type and order. For example, we could
construct a heap for holding up to 20 integers like this:

let h = BinHeap(20, lambda a, b: a < b)

The lambda given as the second argument is a two argument function that
compares its arguments using DSSL2’s built-in < operator. Since that op-
erator works on strings as well, we can construct a heap of strings, ordered
lexicographically, the same way.

But what if we wanted to construct a heap of vertex–distance pairs, as used
in Dijkstra’s algorithm? Then we’d need to pass BinHeap a function for
comparing such things:

struct VertexWithDistance:

let vertex: nat?

let distance: num?

let h = BinHeap(n, lambda a, b: a.distance < b.distance)

And as discussed above, supplying a heap ordering predicate also lets us make
a heap that returns the largest element first instead of the smallest.

let h = BinHeap(10, lambda a, b: a > b)

In the literature, not everyone agrees on whether a “heap,” order unspecified,
is smallest-first or largest-first. It can be confusing. The heap you are
implementing can be used as either a smallest-first “min-heap” or a largest-
first “max-heap,” depending on the predicate given for lt?. When you are
implementing it, however, you will do best if you 1) think of it as a min-heap,
where lt? means “less than,” and 2) never assume you know how to compare
elements any other way, because the client gets to determine the element type
and order.
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Representation overview

A binary heap is a complete binary tree satisfying the heap property. Com-
pleteness means that each level is full except the last one, which is filled from
the left; the heap property means that each node’s value is less than or equal
to its children’s values, according to the heap ordering predicate (lt?).

Here is an example of a binary heap of integers drawn as a tree:

2

3

7 5

6

8

In practice, a binary heap is rarely represented as an actual tree mades of
links and nodes. Instead, the binary tree completeness property means that
the elements can be stored in level order in an array, which is more space-
and cache-efficient. In particular, in this assignment we will represent a heap
as a class with three fields. Here is the same heap as above in our actual heap
representation:

2 3 6 7 5 8
data

len 6
lt? λ

The first field, _data, stores a reference to the vector holding the elements.
In order to allow the heap to grow, we do not necessarily use the full capacity
of the vector; instead we store the actual number of elements in _len, the
second field. The remainder of the vector is then filled with some dummy
value, such as None, depending on the language.

The third field, _lt?, stores the heap ordering predicate that was given to the
BinHeap constructor. This is necessary because your heap must work with any
element type whatsoever, not just with numbers or strings. If elements were
only numbers or strings, you could just compare them using DSSL2’s built-in
< operator, but that won’t work for, say, bank account structs, employees, or
weighted graph edges.

When restoring the invariant after insertion or removal, you have to compare
elements. In particular, at each step, you will be considering some elements
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parent and child, where parent is directly above child in the heap. The
invariant says that parent must be less than or equal to child. So, the
invariant is broken if child is less than parent. Assuming we are in a
method where the BinHeap object is named self, the invariant is broken if
self._lt?(child, parent).

Algorithms

Heap insertion and deletion both involve breaking and then restoring the
heap invariant. Each requires a different algorithm for restoring the invariant.

Insertion

To insert into the heap, first we place the new element at the next available
position in the vector, which is self._len, and we increment self._len.
Then we must restore the invariant. Since the new element is at the bottom
of the tree, it can only possibly move up; hence the algorithm for restoring
the invariant after an insertion is often known as bubbling up.

To bubble up the new element, we compare it to its parent using the heap
ordering predicate. If the invariant is broken—that is, if the new element
is less than its parent—then we swap the new element with its parent, and
continue checking upward at the new element’s new position, until it rises
high enough that either the invariant holds between the new element and its
parent, or the new element has no parent.

Removal

The element to remove is always at the root of the tree (index 0 in the vector),
but the binary tree completeness invariant requires that the heap shrink at
the end (index self._len - 1 in the vector). So to remove an element, first
we move the last element to the root position, overwriting the old copy with
None (which aids in debugging) and decrementing the size. Then we must
restore the invariant, because the element that we moved to the root position
might be in conflict with one or both of its children, if it has any. From the
root of the tree, the element will only have to move down; hence the algorithm
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for restoring the invariant after a remove is sometimes known as percolating
down. We begin percolating down at the root.

To percolate down an element, we need to find out whether it has a child
smaller than itself; and if it has two children, we need to find the smaller of
the two. This can be a bit tricky, since an element may have two children, a
left child only, or no children. (Completeness forbids a right child without
a left.) If the invariant is broken between the element and a child—that is,
if the child is less than the element—then we swap the element with the
smallest of its children, and continue checking downward at the element’s new
position, until the element sinks far enough that the invariant holds between
the element and any children.

Heap sort

Given a vector and an ordering predicate, it’s possible to permute the vector
into heap order in O(n) time in bottom-up fashion: Iterate through the
elements of the vector in reverse and percolate down each of them in turn.3
After that, it is possible to permute the heap-ordered vector into a sorted
vector in O(n logn) time, by repeated percolating down, as follows. Think
of the vector as partitioned into an (initially empty) sorted section at one
end, and the remaining heap-ordered section. Move an element from the
heap-ordered section to the sorted section by simulating a removal from the
heap-ordered section; this causes the “heap” to shrink and leaves the removed
element in the correct position in the sorted section. Repeat until all elements
are in the sorted section.

Thus, the ideas behind a binary heap can be used to sort a vector in-place,
with no auxiliary storage, in O(n logn) time. That said, you do not need to
implement a fully in-place heap sort as described above for this course, since
your BinHeap class likely isn’t designed to be used in that way. (How could
you reuse most of the code?) Instead, the heap_sort function you implement

3It probably isn’t immediately clear why this build-heap procedure isn’t O(n logn).
We’re doing n percolate-downs on a log-height tree, right? Wrong! Consider that for the
second half of the vector, there are no children, so there’s no percolation to do; for the
previous quarter, percolation involves at most one step, and for the previous eighth of the
vector, at most two. Overall, only n

2k
percolations can take k or more steps, and if you add

that up, you find that the number of log-time percolations is sub-linear.
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should sort a vector of n elements using O(n) auxiliary space in the form of
a BinHeap that it creates and uses as internal scratch space. The new heap
will need to hold all the elements of the vector at once, so that determines its
size. Iterate through the vector, inserting each element into the heap. Then
iterate over the indices of the vector in order, overwriting each element in
the vector with the next smallest element from the heap. This algorithm will
terminate with a sorted vector and an empty heap.

Your task

In binheap.rkt, I’ve supplied a skeleton of a class BinHeap that implements
the PRIORITY_QUEUE interface. The class already defines the three fields
_data, _len, and _lt? as described previously, as well as the __init__ and
len methods. I’ve provided stubs for the three additional required methods
and four suggested helper methods. After the class and some tests, you will
find stubs for three further suggested helper functions, and finally a stub for
the heap_sort function that you must complete.

The four suggested helper methods and three suggested helper functions all
have names beginning with underscore, which makes them private to the class
and to the file, respectively. I’ve provided stubs for them in order to help
you factor your program effectively, but you needn’t use them, and can safely
delete them if you prefer doing things a different way.

The BinHeap class

First, you should complete the definition of the BinHeap class, by implementing
the three unimplemented methods from the interface:

1. Complete the definition of method find_min. O(1) time

2. Complete the definition of method remove_min. O(logn) time

3. Complete the definition of method insert. O(logn) time

Note the required asymptotic time complexities of the operations.

I have provided two small tests for the BinHeap class, but you will need many
more.
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The heap_sort function

Second, you must implement sorting, using your BinHeap class and the
algorithm described above.

4. Complete the definition of the heap_sort function. O(n logn) time

Note the required asymptotic time complexity of the function.

I have provided three small tests for heap_sort, but you almost certainly
should write more. It’s relatively easy to come up with vectors to sort, and
that’s a low-effort, high-impact way to exercise your whole heap implementa-
tion.

Deliverables

• The provided file named binheap.rkt4, containing:

– the completed BinHeap class, with your definitions for the three
methods insert, find_min, and remove_min;

– the heap_sort function fully defined; and

– sufficient tests to cover all cases.

4https://bit.ly/2NQz98K
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