
CS 214 Fall 2019

Homework 7: Trip Planner
Code due: Tue., Dec. 3 at 11:59 PM (via GSC)

Self-eval due: Fri., Dec. 6 at 11:59 PM (on GSC)
You may work on your own or with one (1) partner.

For this assignment you will implement a trip planning API that provides
routing and searching services. Unlike previous homework assignments, the
representation is not defined for you, or nor have we specified which data
structures and algorithms to use. Instead, you may choose from among the
data structures you have implemented for previous assignments—hash table,
graph, binary heap, and union-find—as well as associated algorithms that
you either implemented or saw in class. Selecting appropriate data structures
and algorithms is up to you, and your grade will reflect these choices.

Contents
1 Problem Overview 2

1.1 Entities . 2
1.2 Queries . 2

2 API Specification 4
2.1 Vocabulary Types . 4

2.1.1 Basic Types . 5
2.1.2 Entity Types . 5
2.1.3 Collection Types . 5

2.2 The TripPlanner Class and TRIP_PLANNER Interface 6
2.2.1 Creating a TripPlanner Instance 6
2.2.2 Using a TRIP_PLANNER Instance 6

3 Getting Started 7
3.1 Dependencies . 9

4 Deliverables 10

1

CS 214 Fall 2019

1 Problem Overview

Your trip planner will store map data representing three kinds of entities
and answer two kinds of queries about them. The following two subsections
describe the entities and the queries in turn.

1.1 Entities

• A position has a latitude and a longitude, both numbers.

• A road segment has two endpoints, both positions.

• A point-of-interest (POI) has a position, a category (a string), and a
name (a string).

See figure 1 on the following page for an example of a map containing the
three kinds of entities. Note that each position can contain zero, one, or more
POIs. While this example map is aligned to an integer grid, you should not
assume this in general.

We will make two assumptions about the segments and their positions:

1. The length of a road segment is the standard Euclidian distance between
its endpoints.

2. Points-of-interest only appear at positions that also occur as the end-
point of some road segment.

1.2 Queries

Your trip planner must support two forms of queries:

find-route Takes a starting position (latitude and longitude) and the name
of a point-of-interest; returns a shortest path from the starting position
to the named point-of-interest.

find-nearby Takes a starting position (latitude and longitude), a point-of-
interest category, and a limit n; returns the (up to) n points-of-interest
in the given category nearest the starting position.

2

CS 214 Fall 2019

Sand-
wichesfood

(0,0)

Pastafood

(0,1) (0,2)

(1,0)

Local Credit
Unionbank

(1,1) (1,2)

Bar Nonebar,
H Barbar

(1,3)

Burritosfood

(-0.2,3.3)

Figure 1: Example map with POIs labeled by latitude and longitude

Start Name Result path
(0,0) Sandwiches (0,0)
(0,1) Sandwiches (0,1)–(0,0)
(1,1) Sandwiches (1,1)–(1,0)–(0,0) or (1,1)–(0,1)–(0,0)
(1,1) Burritos (1,1)–(1,2)–(1,3)–(1,4)
(1,1) Sushi nothing

Table 1: Example find-route queries

Start Category n Result set
(1,3) food 1 {Burritos}
(0,2) food 1 {Pasta}
(0,2) food 2 {Pasta, Sandwiches}
(0,2) food 3 {Burritos, Pasta, Sandwiches}
(0,2) food 4 {Burritos, Pasta, Sandwiches}
(0,2) bar 1 {Bar None} or {H Bar}
(0,2) bar 2 {Bar None, H Bar}
(0,2) bar 3 {Bar None, H Bar}
(0,2) school 5 {}

Table 2: Example find-nearby queries

3

CS 214 Fall 2019

Representation Alias Purpose
num? Lat? latitude
num? Lon? longitude
str? Cat? POI category
str? Name? POI name

[Lat?, Lon?] position
[Lat?, Lon?, Lat?, Lon?] road segment
[Lat?, Lon?, Cat?, Name?] POI

vector of road segment input road segments
vector of POI input POIs
linked list of position find-route result
linked list of POI find-nearby result

Table 3: Summary of vocabulary types

For some example queries and results see table 1 and table 2 on the previous
page.

2 API Specification

The trip planner API is specified as a DSSL2 interface named TRIP_PLANNER,
which you must implement as a class named TripPlanner in a file named
planner.rkt.

The TRIP_PLANNER interface refers to a variety of “vocabulary types” in order
to represent the three kinds of entities discussed in section 1.1 on page 2, as
well as collections thereof. Thus, before describing the interface itself, we
must define these types.

2.1 Vocabulary Types

The types described in this section are defined in three layers in the next
three subsections: basic types, entities, and collections of entities. All the
types are summarized in table 3.

4

CS 214 Fall 2019

2.1.1 Basic Types

The basic vocabulary types include latitude and longitude (represented as
numbers) and POI categories and names (represented as strings):

let Lat? = num?

let Lon? = num?

let Cat? = str?

let Name? = str?

2.1.2 Entity Types

The three entity types are represented as vectors (not structs) of basic types.
In particular:

• A position is represented as a 2-element vector containing the latitude
and longitude: [Lat?, Lon?].

• A road segment is represented as a 4-element vector containing the
latitude and longitude of one end position followed by the latitude and
longitude of the other: [Lat?, Lon?, Lat?, Lon?].

• A point-of-interest is represented as a 4-element vector containing the
latitude and longitude of its position, then its category, and then its
name: [Lat?, Lon?, Cat?, Name?].

These types are intended for communication between the API and the client,
but you will probably want to define richer representations for internal usage
in your implementation.

There are no contracts provided for recognizing these types.

2.1.3 Collection Types

The API uses collections of entities in two places:

• The constructor for your TripPlanner class needs to take a collection
of road segments and a collection of points-of-interest from which to
build its map. These will be passed as a vector of road segments and a
vector of POIs, respectively.

5

CS 214 Fall 2019

let roads = [[0,0, 1,0], [0,1, 1,1], [0,2, 1,2],

[0,0, 0,1], [1,0, 1,1],

[0,1, 0,2], [1,1, 1,2], [1,2, 1,3],

[1,3, -0.2,3.3]]

let pois = [[0,0, 'food', 'Sandwiches'],

[0,1, 'food', 'Pasta'],

[1,1, 'bank', 'Local␣Credit␣Union'],

[1,3, 'bar', 'Bar␣None'],

[1,3, 'bar', 'H␣Bar'],

[-0.2,3.3, 'food', 'Burritos']]

let tp = TripPlanner(roads, pois)

Figure 2: Instantiating a TripPlanner for the map in figure 1 on page 3

• The queries defined by the TRIP_PLANNER interface (and thus imple-
mented by your TripPlanner class) need to return sequences of positions
(paths) and sets of nearby POIs. These results must be represented as
linked lists (using cons) of positions and POIs, respectively.

2.2 The TripPlanner Class and TRIP_PLANNER Interface

2.2.1 Creating a TripPlanner Instance

Your TripPlanner class must define a constructor that takes two arguments:
a vector of road segments and a vector of points-of-interest, each as described
in section 2.1.3 on the preceding page. For an example of how to instantiate
a TripPlanner instance see figure 2.

2.2.2 Using a TRIP_PLANNER Instance

Your TripPlanner class must implement the TRIP_PLANNER interface (figure 3
on the following page), which defines a method corresponding to each of the
two trip planner query operations described in section 1.2 on page 2. For an
example of how these operations are used, see figure 4 on page 8.

6

CS 214 Fall 2019

interface TRIP_PLANNER:

def find_nearby(

self,

src_lat: Lat?, # starting latitude

src_lon: Lon?, # starting longitude

dst_cat: Cat?, # POI category

n: nat? # maximum number of results

) -> List? # linked list of POIs

def find_route(

self,

src_lat: Lat?, # starting latitude

src_lon: Lon?, # starting longitude

dst_name: Name? # POI name

) -> List? # linked list of positions

Figure 3: The TRIP_PLANNER interface

3 Getting Started

There’s no starter planner.rkt file provided, but there is a starter library that
you should download1. It unzips into a directory named hw7-lib that contains
two items:

• a file interfaces.rkt that provides type and interface definitions that you
will need, and

• a subdirectory compiled that contains compiled versions of our solutions
to Homeworks 3 through 6.

Once you’ve unzipped hw7-lib.zip, you should create your planner.rkt file in the
resulting hw7-lib directory alongside interfaces.rkt. The first line of planner.rkt
must be #lang dssl2 to tell DrRacket what language you are using. After
that, you should import 'interfaces.rkt' in order to get the TRIP_PLANNER

interface. Additional imports are will be needed for your code to depend on
prior homework assigments. The next subsection explains how to set that up.

1 https://bit.ly/33aM6Q5

7

https://bit.ly/33aM6Q5
https://bit.ly/33aM6Q5

CS 214 Fall 2019

assert tp.find_route(1,2, 'Sushi') is None

assert tp.find_route(1,2, 'Burritos') \

== cons([1,2], cons([1,3], cons([-0.2,3.3], None)))

assert tp.find_route(1,3, 'Burritos') \

== cons([1,3], cons([-0.2,3.3], None))

assert tp.find_route(-0.2,3.3, 'Burritos') \

== cons([-0.2,3.3], None)

assert tp.find_nearby(1,3, 'food', 1) \

== cons([-0.2,3.3, 'food', 'Burritos'], None)

assert tp.find_nearby(0,2, 'food', 1) \

== cons([0,1, 'food', 'Pasta'], None)

assert tp.find_nearby(0,2, 'food', 2) \

== cons([0,1, 'food', 'Pasta'],

cons([0,0, 'food', 'Sandwiches'], None))

assert tp.find_nearby(0,2, 'bar', 1) in [

cons([1,3, 'bar', 'Bar␣None'], None),

cons([1,3, 'bar', 'H␣Bar'], None)

]

assert tp.find_nearby(0,2, 'bar', 2) in [

cons([1,3, 'bar', 'Bar␣None'],

cons([1,3, 'bar', 'H␣Bar'], None)),

cons([1,3, 'bar', 'H␣Bar'],

cons([1,3, 'bar', 'Bar␣None'], None))

]

Figure 4: Using a TRIP_PLANNER of the map in figure 1 on page 3

8

CS 214 Fall 2019

3.1 Dependencies

Your trip planner will most likely depend on some parts of Homeworks 3
through 6. You don’t need to resubmit those old homeworks with this one,
however, nor do you need to test with your old code, since hw7-lib.zip contains
our compiled solutions—though you may use your own solutions if you wish.

Even if your own solutions work, our solutions include a few enhancements
that you may want to take advantage of (or replicate):

• The provided hash table provides three significant enhancements over
the HW3 hash table:

– It grows automatically to maintain a reasonable load factor.

– Looking up an absent key with get is no longer an error; instead,
it returns None when the key isn’t found.2

– A for loop can be used to iterate over all the key–value associations
in the table; see interfaces.rkt for details.

We also provide a function hash_table() that takes 0 arguments and
returns a small hash table with a good hash function.

• Instead of one graph class WuGraph, we provide two, AdjMatWUG and
AdjListWUG, with the same interface. The predicate WuGraph? returns
true for either class, and there’s a function WuGraph that constructs one
or the other (unspecified) for backward compatibility.

For each homework, 3 through 6, that you wish you use, you may choose
between your implementation and ours, as follows:

Ours. To depend on one of our solutions, don’t copy your solution into the
hw7-lib directory. Instead, just import the corresponding .rkt file in
planner.rkt, even though it doesn’t exist.3

For example, to use our HW5 solution, just write import 'binheap.rkt',
and DSSL2 will find our compiled code inside the compiled subdirectory.

2This makes some algorithms easier to write, though it means that if the value might
be None then you need to check explicitly using the mem? method.

3If you get an error saying that the file isn’t found, try upgrading DSSL2.

9

https://bit.ly/33aM6Q5

CS 214 Fall 2019

Yours. To depend on one of your own solutions, copy its .rkt file into
the hw7-lib directory alongside your planner.rkt. Modify your solu-
tion to import 'interfaces.rkt' and remove any definitions—usually
interfaces—that it will get from the new import instead. Then import
your solution from planner.rkt.

For example, to use your own HW5 solution, you need to:

1. Copy your binheap.rkt into the hw7-lib directory.

2. Edit binheap.rkt to remove the definition of the PRIORITY_QUEUE

interface and import 'interfaces.rkt' instead.

3. Add import 'binheap.rkt' to your planner.rkt.

For grading, we will use any dependencies that you submit and provide our
own solutions for those that you don’t. If you have changed partners since
Homeworks 3–6, you may submit either partner’s old solutions. Whatever
you choose, it is strongly recommended that you test your code against
the same dependencies that we will test it against for grading.

4 Deliverables

Your submission may contain multiple files, but it must contain a file named
planner.rkt that provides the TripPlanner class as specified in this document.

You must include tests demonstrating that your implementation works; as
usual, you will be graded for coverage. We recommend that you write your
tests in a separate .rkt file that imports planner.rkt, rather than in planner.rkt
directly. Name it anything you like, but don’t forget to upload it.

Additional submitted files may include dependencies such as your code from
prior homework assignments or new definitions for this homework that you
wish to organize. You may name them anything you like, bearing in mind
that any file you submit with a given name will take priority over our solution
file having the same name.

10

	Problem Overview
	Entities
	Queries

	API Specification
	Vocabulary Types
	Basic Types
	Entity Types
	Collection Types

	The TripPlanner Class and TRIP_PLANNER Interface
	Creating a TripPlanner Instance
	Using a TRIP_PLANNER Instance

	Getting Started
	Dependencies

	Deliverables

