
Binary Search Trees

CS 214, Fall 2019



A data structure for dictionaries

There are several data structures that we can use to represent
dictionaries:

• A list of keys-value pairs
• A hash table
• An array of key-value pairs
• A sorted array of key-value pairs

Let’s consider the last one

2



A sorted array dictionary

key alice
val 17

key bea
val 9

key carol
val 4

key chaz
val 66

key cho
val 0

key choi
val 24

3



Easy to lookup

Input: a dictionary array array and a key key
Output: a value, or nothing
start ← 0;
limit ← the length of array;
while start < limit do

mid ← the average of start and limit;
if key < array[mid].key then

limit ← mid
else if key > array[mid].key then

start ← mid + 1
else

return array[mid].val
end

end
return null

4



Complexity of lookup

(Simplify by dropping values and changing keys to numbers. Same
algorithm works, but it fits on less screen space.)

2 7 17 19 56 75 77 90

• Suppose we want 75. We’ll track where it might be with a
area

• Initially, the element could be anywhere in the array
• At each iteration, limit − start is cut in half
• This can happen at most log2 n times
• Hence, O(log n)

5



Complexity of lookup

(Simplify by dropping values and changing keys to numbers. Same
algorithm works, but it fits on less screen space.)

2 7 17 19 56 75 77 90

• Suppose we want 75. We’ll track where it might be with a
area
• Initially, the element could be anywhere in the array

• At each iteration, limit − start is cut in half
• This can happen at most log2 n times
• Hence, O(log n)

5



Complexity of lookup

(Simplify by dropping values and changing keys to numbers. Same
algorithm works, but it fits on less screen space.)

2 7 17 19 56 75 77 90

• Suppose we want 75. We’ll track where it might be with a
area
• Initially, the element could be anywhere in the array
• At each iteration, limit − start is cut in half

• This can happen at most log2 n times
• Hence, O(log n)

5



Complexity of lookup

(Simplify by dropping values and changing keys to numbers. Same
algorithm works, but it fits on less screen space.)

2 7 17 19 56 75 77 90

• Suppose we want 75. We’ll track where it might be with a
area
• Initially, the element could be anywhere in the array
• At each iteration, limit − start is cut in half
• This can happen at most log2 n times

• Hence, O(log n)

5



Complexity of lookup

(Simplify by dropping values and changing keys to numbers. Same
algorithm works, but it fits on less screen space.)

2 7 17 19 56 75 77 90

• Suppose we want 75. We’ll track where it might be with a
area
• Initially, the element could be anywhere in the array
• At each iteration, limit − start is cut in half
• This can happen at most log2 n times
• Hence, O(log n)

5



Difficult to insert

• Inserting into an array requires shifting elements out of the
way

• There may be as many as n elements to move
• Hence insertion is O(n)

6



Difficult to insert

• Inserting into an array requires shifting elements out of the
way
• There may be as many as n elements to move

• Hence insertion is O(n)

6



Difficult to insert

• Inserting into an array requires shifting elements out of the
way
• There may be as many as n elements to move
• Hence insertion is O(n)

6



Enter the BST

A binary search tree stores elements in order in a linked data
structure

• In order means we can binary search
• Linked means we can easily insert new elements

7



BST example

key chaz
val 66
left

right

key choi
val 24
left

right

key cho
val 0
left

right

key bea
val 9
left

right

key alice
val 17
left

right

key carol
val 4
left

right

8



BST lookup algorithm

Input: a BST root root and a key key
Output: a value, or nothing
curr ← root;
while curr is not null do

if key < curr.key then
curr ← curr.left

else if key > curr.key then
curr ← curr.right

else
return curr.val

end
end
return null

9



Complexity of BST lookup

It’s binary search, right?

10



Binary search, again

Input: a dictionary array array and a key key
Output: a value, or nothing
start ← 0;
limit ← the length of array;
while start < limit do

mid ← the average of start and limit;
if key < array[mid].key then

limit ← mid
else if key > array[mid].key then

start ← mid + 1
else

return array[mid].val
end

end
return null

11



Complexity of BST lookup

77

45 89

22 60 83 91

11 24 48 71 79 86 90 94

12



Complexity of BST lookup

77

45 89

22 60 83 91

11 24 48 71 79 86 90 94

12



Complexity of BST lookup

77

45 89

22 60 83 91

11 24 48 71 79 86 90 94

12



Complexity of BST lookup

77

45 89

22 60 83 91

11 24 48 71 79 86 90 94

12



Complexity of BST lookup, take 2

11
22

24
45

48
60

71
77

79
83

86
89

90
91

94

13



BST insert algorithm (recursive)

Function BstInsert(node, key, value)is
Output: the updated BST
if node is null then

node← a new node with key, value, and no children
else if key < node.key then

node.left ← BstInsert(node.left, key, value)
else if key > node.key then

node.right ← BstInsert(node.right, key, value)
else

node.val = value
end
return node

end

14



BST insert algorithm (with pointers)

Input: a BST root root, a key key, and a value value
Output: the updated BST
curr ← the address of root;
while the value addressed by curr is not null do

if key < curr.key then
curr ← the address of curr.left

else if key > curr.key then
curr ← the address of curr.right

else
curr.val ← value;
return

end
end
newNode←
a new node with key, value, and null for both children;

the value addressed by curr ← newNode

15



Complexity of BST insert

• First do a search — O(log n)

• If we find the key, replace the value — O(1)
• If not, add a new leaf where we hit bottom — O(1)
• Hence, O(log n)

16



Complexity of BST insert

• First do a search — O(log n)
• If we find the key, replace the value — O(1)

• If not, add a new leaf where we hit bottom — O(1)
• Hence, O(log n)

16



Complexity of BST insert

• First do a search — O(log n)
• If we find the key, replace the value — O(1)
• If not, add a new leaf where we hit bottom — O(1)

• Hence, O(log n)

16



Complexity of BST insert

• First do a search — O(log n)
• If we find the key, replace the value — O(1)
• If not, add a new leaf where we hit bottom — O(1)
• Hence, O(log n)

16



BST delete

77

45 89

22 60 83 91

11 24 48 71 79 86 90 94

17



BST delete

77

45 89

22 60 83 91

11 24 48 71 79 86 90 94

17



BST delete

77

45 89

22 60 83 91

11 24 48 71 86 90 94

17



BST delete

77

45 89

22 60 83 91

11 24 48 71 86 90 94

17



BST delete

77

45 89

22 60 83 91

11 24 48 71 86 90 94

17



BST delete

77

45 89

22 60 83 91

11 24 48 71 86 90 94

17



BST delete

77

48 89

22 60 83 91

11 24 45 71 86 90 94

17



BST delete

77

48 89

22 60 83 91

11 24 71 86 90 94

17



BST delete

77

48 89

22 60 83 91

11 24 71 86 90 94

17



BST delete

77

48 89

22 60 83 91

11 24 71 86 90 94

17



BST delete

77

48 89

22 60 83 91

11 24 71 86 90 94

17



BST delete

83

48 89

22 60 77 91

11 24 71 86 90 94

17



BST delete

83

48 89

22 60 86 91

11 24 71 90 94

17



Next time: hashing and hash tables


	Next time: hashing and hash tables

