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A data structure for dictionaries

There are several data structures that we can use to represent
dictionaries:

• A list of keys-value pairs
• A hash table
• An array of key-value pairs
• A sorted array of key-value pairs

Let’s consider the last one
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A sorted array dictionary

key alice
val 17

key bea
val 9

key carol
val 4

key chaz
val 66

key cho
val 0

key choi
val 24
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Easy to lookup

Input: a dictionary array array and a key key
Output: a value, or nothing
start ← 0;
limit ← the length of array;
while start < limit do

mid ← the average of start and limit;
if key < array[mid].key then

limit ← mid
else if key > array[mid].key then

start ← mid + 1
else

return array[mid].val
end

end
return null
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Complexity of lookup

(Simplify by dropping values and changing keys to numbers. Same
algorithm works, but it fits on less screen space.)

2 7 17 19 56 75 77 90

• Suppose we want 75. We’ll track where it might be with a
area

• Initially, the element could be anywhere in the array
• At each iteration, limit − start is cut in half
• This can happen at most log2 n times
• Hence, O(log n)
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Difficult to insert

• Inserting into an array requires shifting elements out of the
way

• There may be as many as n elements to move
• Hence insertion is O(n)
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Enter the BST

A binary search tree stores elements in order in a linked data
structure

• In order means we can binary search
• Linked means we can easily insert new elements
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BST example

key chaz
val 66
left

right

key choi
val 24
left

right

key cho
val 0
left

right

key bea
val 9
left

right

key alice
val 17
left

right

key carol
val 4
left

right
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BST lookup algorithm

Input: a BST root root and a key key
Output: a value, or nothing
curr ← root;
while curr is not null do

if key < curr.key then
curr ← curr.left

else if key > curr.key then
curr ← curr.right

else
return curr.val

end
end
return null
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Complexity of BST lookup

It’s binary search, right?
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Binary search, again

Input: a dictionary array array and a key key
Output: a value, or nothing
start ← 0;
limit ← the length of array;
while start < limit do

mid ← the average of start and limit;
if key < array[mid].key then

limit ← mid
else if key > array[mid].key then

start ← mid + 1
else

return array[mid].val
end

end
return null
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Complexity of BST lookup

77

45 89

22 60 83 91

11 24 48 71 79 86 90 94
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Complexity of BST lookup, take 2

11
22

24
45

48
60

71
77

79
83

86
89

90
91

94
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BST insert algorithm (recursive)

Function BstInsert(node, key, value)is
Output: the updated BST
if node is null then

node← a new node with key, value, and no children
else if key < node.key then

node.left ← BstInsert(node.left, key, value)
else if key > node.key then

node.right ← BstInsert(node.right, key, value)
else

node.val = value
end
return node

end
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BST insert algorithm (with pointers)

Input: a BST root root, a key key, and a value value
Output: the updated BST
curr ← the address of root;
while the value addressed by curr is not null do

if key < curr.key then
curr ← the address of curr.left

else if key > curr.key then
curr ← the address of curr.right

else
curr.val ← value;
return

end
end
newNode←
a new node with key, value, and null for both children;

the value addressed by curr ← newNode
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Complexity of BST insert

• First do a search — O(log n)

• If we find the key, replace the value — O(1)
• If not, add a new leaf where we hit bottom — O(1)
• Hence, O(log n)

16



Complexity of BST insert

• First do a search — O(log n)
• If we find the key, replace the value — O(1)

• If not, add a new leaf where we hit bottom — O(1)
• Hence, O(log n)

16



Complexity of BST insert

• First do a search — O(log n)
• If we find the key, replace the value — O(1)
• If not, add a new leaf where we hit bottom — O(1)

• Hence, O(log n)

16



Complexity of BST insert

• First do a search — O(log n)
• If we find the key, replace the value — O(1)
• If not, add a new leaf where we hit bottom — O(1)
• Hence, O(log n)

16



BST delete
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BST delete

83

48 89

22 60 86 91
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Next time: hashing and hash tables
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