The Binary Heap

CS 214, Fall 2019
Implementing a priority queue

A (min-)priority queue provides these operations:

- **insert**: adds an element
- **remove_min**: removes the smallest element
Some implementation complexities

<table>
<thead>
<tr>
<th></th>
<th>insert</th>
<th>remove_min</th>
</tr>
</thead>
<tbody>
<tr>
<td>sorted list</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>unsorted list</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>
Some implementation complexities

<table>
<thead>
<tr>
<th>List Type</th>
<th>Insert Complexity</th>
<th>Remove Min Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorted List</td>
<td>$\mathcal{O}(n)$</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>Unsorted List</td>
<td>$\mathcal{O}(1)$</td>
<td>$\mathcal{O}(n)$</td>
</tr>
<tr>
<td>Binary Heap</td>
<td>$\mathcal{O}(\log n)$</td>
<td>$\mathcal{O}(\log n)$</td>
</tr>
</tbody>
</table>

Introducing the binary heap

A binary heap is complete binary tree that is heap-ordered
A tree is heap-ordered if every element is less than or equal to its children
Introducing the binary heap

A binary heap is complete binary tree that is heap-ordered.

A tree is heap-ordered if every element is less than or equal to its children.

Which of these is a binary heap?:

```
      2
     / \
    5   97
   / \  /  \
  40 7 99 40 7 99 40 7 99
```

```
      2
     / \  \
    5   97
   / \  / \
  40 7 99 40 7 99
```

```
      5
     / \
    2   97
   /  \
  40 7
```

```
      5
     / \
    2   97
   /  \
  40 7
```
Binary heap insertion

1. Add the new element at the end
2. Bubble up to restore invariant
Binary heap insertion

1. Add the new element at the end
2. Bubble up to restore invariant
Binary heap insertion

1. Add the new element at the end
2. Bubble up to restore invariant
Binary heap insertion

1. Add the new element at the end
2. Bubble up to restore invariant
Binary heap insertion

1. Add the new element at the end
2. Bubble up to restore invariant
Binary heap insertion

1. Add the new element at the end
2. Bubble up to restore invariant
Binary heap insertion

1. Add the new element at the end
2. Bubble up to restore invariant
Binary heap insertion

1. Add the new element at the end
2. Bubble up to restore invariant
Binary heap insertion

1. Add the new element at the end
2. Bubble up to restore invariant
Binary heap removal

1. Replace the root with the last element of the heap
2. Sink down to restore invariant
Binary heap removal

1. Replace the root with the last element of the heap
2. Sink down to restore invariant
1. Replace the root with the last element of the heap
2. Sink down to restore invariant
Binary heap removal

1. Replace the root with the last element of the heap
2. Sink down to restore invariant
Binary heap removal

1. Replace the root with the last element of the heap
2. Sink down to restore invariant
Binary heap removal

1. Replace the root with the last element of the heap
2. Sink down to restore invariant
Binary heap removal

1. Replace the root with the last element of the heap
2. Sink down to restore invariant
Binary heap removal

1. Replace the root with the last element of the heap
2. Sink down to restore invariant
The super cool thing about binary heaps

Instead of storing it as an actual tree with pointers:

```
2
\   \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \    \7```
The super cool thing about binary heaps

Instead of storing it as an actual tree with pointers:

A binary heap is stored in level-order in an array:
The super cool thing about binary heaps

Instead of storing it as an actual tree with pointers:

```
2
5
40
45
60
7
12
14
```

a binary heap is stored in level-order in an array:

```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
2 5 6 40 7 4 90 45 60 12 14 75 8
```
The super cool thing about binary heaps

Instead of storing it as an actual tree with pointers:

```
 2
 / \
 5 4
 / /
40 7 6
 | / \
45 7 8
```

a binary heap is stored in level-order in an array:

```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
2 5 4 40 7 6 90 45 60 12 14 75 8
```
Finding parents and children

Because the structure is *implicit*, we can’t just follow pointers

Suppose $i$ is the index of a node:

- How can we find its parent (if any)?
- How can we find its children (if any)?
Next time: another graph algorithm and another data structure to go with it