Have you heard of tetration?

It's the fourth hyperoperation.

Have you heard of tetration?

It's the fourth hyperoperation.

A

b+n 2 b+1+1+--

+1

n

Have you heard of tetration?

It's the fourth hyperoperation.

b+n £ b+1+1+---+1
n

b+b+---+b

~—_——

n

(1>

bxn

Have you heard of tetration?

It's the fourth hyperoperation.

b+n £ b4+1+1+---+1
n
bxn £ b+b+---+b
—_——
n
b" £ bxbx---xb
N——

n

Have you heard of tetration?

It's the fourth hyperoperation.

b+n £ b4+1+1+---+1
n
bxn £ b+b+---+b
—_——
n
b" & bxbx---xb
N——
B n
np A bb

—
n

Have you heard of tetration?

It's the fourth hyperoperation.

b+n £ b4+1+1+---+1
n
bxn £ b+b+---+b
—_——
n
b" & bxbx---xb
N——
B n
np A bb
——

n

Exponentiation associates to the right, so for example ‘b means

e (bb)), not ((bb)b)b.

Have you heard of tetration?

It's the fourth hyperoperation.

b+n £ b4+1+1+---+1
n
bxn £ b+b+---+b
—_——
n
b" & bxbx---xb
N——
B n
np A bb
——

n
Exponentiation associates to the right, so for example ‘b means

b(b(b), not ((bb)b)b. Why?

Have you heard of tetration?

It's the fourth hyperoperation.

b+n £ b4+1+1+---+1
n
bxn £ b+b+---+b
—_——
n
b" & bxbx---xb
N——
B n
np A bb
——

n
Exponentiation associates to the right, so for example ‘b means

b(b(b) not ((bb)b)b. Why? Which is bigger?

Tetration FAQ

Q: How fast does it grow?

Tetration FAQ

Q: How fast does it grow? A: Real fast.

Tetration FAQ

Q: How fast does it grow? A: Real fast.

Q: Does it have an inverse?

Tetration FAQ

Q: How fast does it grow? A: Real fast.

Q: Does it have an inverse? A: Yeah, 2—which do you want?

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?

Q: Is one better than the other?

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: Maybe, you decide:

f ... then..., andalso....
b+n=a
bxn=a
b"=a

o) = &)

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: Maybe, you decide:

f ... then..., andalso....
b+n=a b=a-n n=a->b
bxn=a
b" =a

o) = &)

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: Maybe, you decide:

f ... then..., andalso....
b+n=a b=a-n n=a->b
bxn=a b=a/n n=al/b

b" =a

o) = &)

Tetration FAQ

Q: How fast does it grow?

Q: Does it have an inverse?

Q: Is one better than the other?

f ... then ...,
b+n=a b=a-—-n
bxn=a b=a/n

[= &
o) = &)

A: Real fast.
A: Yeah, 2—which do you want?
A: Maybe, you decide:

and also. ...
n=a->b
n=al/b
b=1ya n=log,a

Tetration FAQ

Q: How fast does it grow?

Q: Does it have an inverse?

Q: Is one better than the other?

f ... then ...,
b+n=a b=a-—-n
bxn=a b=a/n
b=
b=

[= &
o) = &)

A: Real fast.
A: Yeah, 2—which do you want?
A: Maybe, you decide:

and also. ...
n=a->b
n=al/b
Va n = log,a

Va,

Tetration FAQ

Q: How fast does it grow?

Q: Does it have an inverse?

Q: Is one better than the other?

f ... then ...,
b+n=a b=a-—-n
bxn=a b=a/n
b=
b=

[= &
o) = &)

A: Real fast.
A: Yeah, 2—which do you want?
A: Maybe, you decide:

and also. . ..
n=a->bt
n=al/b
Va n = log,a
Va, n=logja

Tetration FAQ

Q: How fast does it grow?

Q: Does it have an inverse?

Q: Is one better than the other?

f ... then ...,
b+n=a b=a-—-n
bxn=a b=a/n
b=
b=

[= &
o) = &)

A: Real fast.
A: Yeah, 2—which do you want?
A: Maybe, you decide:

and also. ...
n=a->b
n=al/b
Vas n=log,a
Va, n=logja

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: Maybe, you decide:

f ... then..., andalso....
b+n=a b=a-n n=a-b
bxn=a b=a/n n=al/b

b"=a b=1{a; n=loga
"b=a b=+/a, n=log;a

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: Maybe, you decide:

f ... then..., andalso....
b+n=a b=1{a, n=loga
bxn=a b=1{/a, n=loga
b"=a b=<ya; n=logla
"b=a b=1a, n=loga

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: Maybe, you decide:

f ... then..., andalso....
l+n=a p—a; n=log)a
b+n=a b=1{a, n=loga
bxn=a b=1{/a, n=loga
b"=a b=<a; n=loga
"b=a b=1ya, n=loga

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?
Q: Is one better than the other? A: Maybe, you decide:

then..., andalso....
)=a b=%¥a; n=logja
)=a b=<Va, n=loga
)=a b=1Va, n=logia
)=a b=1{a; n=logla
)=a b=<Va, n=loga

Tetration FAQ

Q: How fast does it grow?

Q: Does it have an inverse?

Q: Is one better than the other?

A: Real fast.
A: Yeah, 2—which do you want?

A: One we care about:

f ... then..., andalso....
b+n=a b=a-n n=a->b
bxn=a b=a/n n=a/b

b =a b=/a n =log,a
"b=a b=+v/a, n=loga

ifa<1;

logpa = .
1 + logg log,a otherwise.

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?

Q: Is one better than the other? A: One we care about:

"b=a = n=loga

N 0 ifa <1;
logpa = .)
1+ logy log,a otherwise.

Q: Why should we care?

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?

Q: Is one better than the other? A: One we care about:

"b=a = n=logya

log* 3 — 0 ifa<1;
E 1 + logglogy,a otherwise.

Q: Why should we care? A: Its inverse grows as slow as its
self grows fast, and tetration grows real fast:

njo 12 3 4 5 6
201 2

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?

Q: Is one better than the other? A: One we care about:

"b=a = n=logya

log* 3 — 0 ifa<1;
E 1 + logglogy,a otherwise.

Q: Why should we care? A: Its inverse grows as slow as its
self grows fast, and tetration grows real fast:

njo 12 3 4 5 6
211 2 4

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?

Q: Is one better than the other? A: One we care about:

"b=a = n=logya

log* 3 — 0 ifa<1;
E 1 + logglogy,a otherwise.

Q: Why should we care? A: Its inverse grows as slow as its
self grows fast, and tetration grows real fast:

njo 12 3 4 5 6
201 2 4 16

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?

Q: Is one better than the other? A: One we care about:

"b=a = n=logya

log* 3 — 0 ifa<1;
E 1 + logglogy,a otherwise.

Q: Why should we care? A: Its inverse grows as slow as its
self grows fast, and tetration grows real fast:

njo 12 3 4 5 6
2011 2 4 16 65,536

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?

Q: Is one better than the other? A: One we care about:

"b=a = n=loga

N 0 ifa <1;
logpa = .)
1+ logy log,a otherwise.

Q: Why should we care? A: Its inverse grows as slow as its
self grows fast, and tetration grows real fast:

njo 12 3 4 5 6
"2]1 2 4 16 65536 209530

2

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?

Q: Is one better than the other? A: One we care about:

"b=a = n=loga

N 0 ifa <1;
logpa = .)
1+ logy log,a otherwise.

Q: Why should we care? A: Its inverse grows as slow as its
self grows fast, and tetration grows real fast:

njo 12 3 4 5 6
n2‘1 2 4 16 65.536 265536 ~,92.0035x1019 7%

2

Tetration FAQ

Q: How fast does it grow? A: Real fast.
Q: Does it have an inverse? A: Yeah, 2—which do you want?

Q: Is one better than the other? A: One we care about:

"b=a = n=loga

N 0 ifa <1;
logpa = .)
1+ logy log,a otherwise.

Q: Why should we care? A: Its inverse grows as slow as its
self grows fast, and tetration grows real fast:

. |
*a

1 9 4 E GhEas 2Te pAlledEE
0 1 2

3 4 S 6

Union-Find

CS 214, Fall 2019

We’re going to use the chalkboard from here on, but
if you want union-find slides to read on your own then
| suggest these slides from Robert Sedgewick and
Kevin Wayne’s algorithms & data structures course at
Princeton University. I've included a selection of those
same union-find slides as the rest of this PDF, and
the rest of their original lectures may be found here.

https://www.cs.princeton.edu/~rs/AlgsDS07/01UnionFind.pdf
https://www.cs.princeton.edu/~rs/AlgsDS07

Union-find abstractions

* Objects.
* Disjoint sets of objects.
e Find queries: are two objects in the same set?

e Union commands: replace sets containing two items by their union

Goal. Design efficient data structure for union-find.

¢ Find queries and union commands may be intermixed.
¢ Number of operations M can be huge.

¢ Number of objects N can be huge.

Quick-find [eager approach]

Data structure.
e Integer array id[] of size N.
e Interpretation: p and q are connected if they have the same id.

5 and 6 are connected
2, 3,4, and 9 are connected

O©N
O w
© »
o Ul
o o

~~
© 0
© ©

Quick-find [eager approach]

Data structure.
e Integer array id[] of size N.

e Interpretation: p and q are connected if they have the same id.

© w
© N
oo,
oo
~~
© 0
© ©

Find. Check if p and g have the same id.

Union. To merge components containing p and q,
change all entries with id[p] fo id[q].

1 4 5 7 8 9
1 6 6 7 8 6

N

problem: many values can change

i 6
id[i] 6

5 and 6 are connected
2, 3,4, and 9 are connected

id[3]=9: id[6] = 6
3 and 6 not connected

union of 3 and 6
2,3,4,5,6,and 9 are connected

Quick-find example

111111111

problem: many values can change

@@@8@@@@

@@@@&@@@
@@@@@g
@@@@
®e0e 8
®oetwo”d
®oeddved

O __M

@®

N

(GRORGA RO

e TS

0g0gogCHONORORCRO)

Quick-find is too slow

Quick-find algorithm may take ~MN steps
to process M union commands on N objects

Rough standard (for now).

* 10° operations per second.

o 109 words Of main memory. / a truism (roughly) since 1950 !
¢ Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

* 10'° edges connecting 10° nodes.

* Quick-find takes more than 10* operations.
* 300+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.
¢ New computer may be 10x as fast.

e But, has 10x as much memory so problem may be 10x bigger.

e With quadratic algorithm, takes 10x as long!

Quick-union [lazy approach]

Data structure.
e Integer array id[] of size N.
e Interpretation: id[i] is parent of i.

e Root of i is id[id[id[...id[i].-.]11].

oo
S
©N
AW
[N
oo
oo
~~
© ®

© ©

/ keep going until it doesn't change

@0 @ @ ®
ONCO)

3

3'sroot is 9; 5's root is 6

Quick-union [lazy approach]

Data structure.
e Integer array id[] of size N.

e Interpretation: id[i] is parent of i. /keep going until it doesn't change

e Root of i is id[id[id[...id[i]...11]1.
i 01 2 3 456 7 8 9
id[il]0 1 9 4 9 6 6 7 8 9

Find. Check if p and q have the same root.

Union. Set the id of q's root to the id of p's root.

5w
(I
o0
— oo
~~
© ©
© ©

only one value changes

©0@®
ONO)

3

® @

3'sroot is 9; 5's root is 6
3 and 5 are not connected

ORORO
@ ®E

@6

Quick-union example

®®®8®®®@®

®®®§@®®®

G)@@@@g
®

®©©®
°dpe8
®
®.§=®
@0
g
@6

N problem: trees can get tall

20

Quick-union is also too slow

Quick-find defect.
e Union too expensive (N steps).
¢ Trees are flat, but too expensive to keep them flat.

Quick-union defect.

¢ Trees can geft tall.

e Find too expensive (could be N steps)
* Need to do find o do union

algorithm union find
Quick-find N 1
Quick-union N* N «—— worst case

* includes cost of find

22

Improvement 1: Weighting

Weighted quick-union.

¢ Modify quick-union to avoid tall trees.

e Keep track of size of each component.

e Balance by linking small tree below large one.

Ex. Union of 5 and 3.
¢ Quick union: link 9 to 6.
¢ Weighted quick union: link 6 to 9.

size 2

©©§®
@ ®

3
q

P

24

Weighted quick-union example

@@@S@@@@

©00 8 0000
800 8 000
g0 B8 o000
8808

25

Weighted quick-union: Java implementation

Java implementation.

¢ Almost identical to quick-union.

¢ Maintain extra array sz[] to count number of elements
in the tree rooted at i.

Find. Identical to quick-union.

Union. Modify quick-union to
¢ merge smaller tree into larger tree
¢ update the sz[] array.

if (sz[i] < sz[j]) { id[i]
else { id[3]

j; sz[j] += sz[i]; }
i; sz[i] += sz[j]; }

26

Weighted quick-union analysis

Analysis.

e Find: takes time proportional to depth of p and q.
e Union: takes constant time, given roots.

e Fact: depth is at most Ig N. [needs proof]

Data Structure Union Find
Quick-find N 1
Quick-union N* N

Weighted QU IlgN* Ig N

* includes cost of find

Stop at guaranteed acceptable performance? No, easy to improve further.

Improvement 2: Path compression

Path compression. Just after computing the root of i,
set the id of each examined node to root(i).

root(9)

28

Weighted quick-union with path compression

Path compression.

e Standard implementation: add second loop to root() fo set
the id of each examined node to the root.

e Simpler one-pass variant: make every other node in path
point to its grandparent.

public int root(int i)

while (i !'= id[i])
{

id[i] = id[id[i]1]; only one extra line of code !
i = id[il:
return i;

In practice. No reason not tol Keeps tree almost completely flat.

29

Weighted quick-union with path compression

@@@8@@@@

@@@&@@@

g@@@@

g0 8 000
133355783 0 $0e
@O & @
133335783 880
go
133335383 © @

OT®

®

®
®

A
no problem: trees stay VERY flat ————> @ TT6 OO
®

30

WQUPC performance

Theorem. Starting from an empty data structure, any sequence
of M union and find operations on N objects takes O(N + M Ig* N) time.

e Proof is very difficult. i
e But the algorithm is still simple!

number of times needed to take

the Ig of a number until reaching 1

Linear algorithm?
e Cost within constant factor of reading in the data.

e In theory, WQUPC is not quite linear. Nl
e Inpractice, WQUPC is linear. |)
i s
because Ig* N is a constant 16

in this universe 65536

265536

Amazing fact:
¢ In theory, no linear linking strategy exists

Summary

Algorithm
Quick-find
Quick-union
Weighted QU
Path compression

Weighted + path

Worst-case time
MN
MN
N+ Mlog N
N+ Mlog N
(M +N)Ig* N

M union-find ops on a set of N objects

Ex. Huge practical problem.
* 10'° edges connecting 10° nodes.
¢ WQUPC reduces time from 3,000 years to 1 minute.

¢ Supercomputer won't help much.
¢ Good algorithm makes solution possible.

Bottom line.

WQUPC on Java cell phone beats QF on supercomputer!

WQUPC makes it possible to solve problems
that could not otherwise be addressed

32

