
Ownership and Borrowing
and Lifetimes (Oh My!)

EECS 3/496: Systems Programming in Rust

Winter 2020

Definitions

An object is a chunk of memory with a type
Examples:

• The number 4 is a value, not an object
• A word of memory containing the number 4 is an object

A variable is the name of an object

2

Ownership

Every object in Rust has an owner. Either:

• a variable, or
• some other object

Ownership comes with rights and responsibilities:

• The owner is allowed to modify the object
• The owner must destroy the object (or transfer it to another

owner)

3

Ownership

Every object in Rust has an owner. Either:

• a variable, or
• some other object

Ownership comes with rights and responsibilities:

• The owner is allowed to modify the object
• The owner must destroy the object (or transfer it to another

owner)

3

Transferring ownership

Ownership can be transferred:

pub fn inc_vec(mut v: Vec<usize>, ix: usize) {
v[ix] += 1;

}

#[test]
fn test_inc_vec() {

let expected = vec![3, 4, 6];
let actual = vec![3, 4, 5];

inc_vec(actual, 2);

assert_eq!(expected, actual); // Error! actual has been moved
}

4

Transferring ownership

Ownership can be transferred:

pub fn inc_vec(mut v: Vec<usize>, ix: usize) {
v[ix] += 1;

}

#[test]
fn test_inc_vec() {

let expected = vec![3, 4, 6];
let actual = vec![3, 4, 5];

inc_vec(actual, 2);

assert_eq!(expected, actual);

// Error! actual has been moved
}

4

Transferring ownership

Ownership can be transferred:

pub fn inc_vec(mut v: Vec<usize>, ix: usize) {
v[ix] += 1;

}

#[test]
fn test_inc_vec() {

let expected = vec![3, 4, 6];
let actual = vec![3, 4, 5];

inc_vec(actual, 2);

assert_eq!(expected, actual); // Error! actual has been moved
}

4

One solution: FP style

pub fn inc_vec(mut v: Vec<usize>, ix: usize) −> Vec<usize> {
v[ix] += 1;
v

}

#[test]
fn test_inc_vec() {

let expected = vec![3, 4, 6];
let mut actual = vec![3, 4, 5];

actual = inc_vec(actual, 2);

assert_eq!(expected, actual);
}

5

The Rust solution: borrowing

pub fn inc_vec(v: &mut Vec<usize>, ix: usize) {
v[ix] += 1;

}

#[test]
fn test_inc_vec() {

let expected = vec![3, 4, 6];
let mut actual = vec![3, 4, 5];

inc_vec(&mut actual, 2);

assert_eq!(expected, actual);
}

6

More idiomatic Rust: take a slice

pub fn inc_vec(v: &mut [usize], ix: usize) {
v[ix] += 1;

}

#[test]
fn test_inc_vec() {

let expected = vec![3, 4, 6];
let mut actual = vec![3, 4, 5];

inc_vec(actual.as_mut_slice(), 2);

assert_eq!(expected, actual);
}

7

Owned versus borrowed

want
T &T

T depends free*
ha

ve
&T depends free

want
String &String &str

String

$$$ free* free*

&String

$$$ free free

ha
ve

&str

$$$ $$$** free

8

Owned containers versus borrowed views

want
T &T

T depends free*
ha

ve
&T depends free

want
String &String &str

String

$$$ free* free*

&String

$$$ free free

ha
ve

&str

$$$ $$$** free

8

Owned containers versus borrowed views

want
T &T

T depends free*
ha

ve
&T depends free

want
String &String &str

String $$$

free* free*

&String $$$

free free

ha
ve

&str $$$

$$$** free

8

Owned containers versus borrowed views

want
T &T

T depends free*
ha

ve
&T depends free

want
String &String &str

String $$$ free* free*
&String $$$

free free

ha
ve

&str $$$

$$$** free

8

Owned containers versus borrowed views

want
T &T

T depends free*
ha

ve
&T depends free

want
String &String &str

String $$$ free* free*
&String $$$ free

free

ha
ve

&str $$$

$$$**

free

8

Owned containers versus borrowed views

want
T &T

T depends free*
ha

ve
&T depends free

want
String &String &str

String $$$ free* free*
&String $$$ free free

ha
ve

&str $$$ $$$** free

8

Owned containers versus borrowed views

want
T &T

T depends free*
ha

ve
&T depends free

want
Vec<T> &Vec<T> &[T]

Vec<T> $$$ free* free*
&Vec<T> $$$ free free

ha
ve

&[T] $$$ $$$** free

8

Borrowing implements reader/writer semantics
You can borrow

• as many immutable references as you like, or
• one mutable reference.

let mut x = SomeObject::new();

{
let r1 = &x;
let r2 = &x;
let r3 = r1;
let r4 = &mut x; // error!

}

{
let r5 = &mut x; // ok
let r6 = &x; // error!

}

9

Hidden borrows

Methods calls may (mutable) borrow self:

impl SomeObject {
pub fn f(&mut self) { · · · }

}

let x = SomeObject::new();

x.f(); // error: x isn’t mutable

10

When borrowing won’t do

• The Copy trait for cheap copies
• The Clone trait for expensive copies

11

The Copy trait

Types implementing the Copy trait are copied implicitly rather
than moved:

• usize and other built-in numeric types
• &str and other immutable reference types
• In general, types that

▶ are cheap to copy (small), and
▶ don’t own a resource (e.g., heap allocations)

let a = 5;
let b = a;
f(a);
let c = a + b;

12

The Clone trait

The Clone trait supports explicitly copying:

• String, Vec, HashMap, etc.
• In general, types that

▶ may be expensive to copy, and
▶ don’t involve a unique resource (e.g., a file handle)

let v = vec![3, 4, 5];
let u = v.clone();
f(v);
g(u);

13

Lifetimes

Object have lifetimes (or more precisely, death times)

{
let mut r: &str;

{
let s = "hello".to_owned();

r = &s; // error because r outlives s
} // s dies here

println!("{}", r);
} // r dies here

A reference must die before its referent!

14

Lifetimes

Object have lifetimes (or more precisely, death times)

{
let mut r: &str;

{
let s = "hello".to_owned();

r = &s; // error because r outlives s
} // s dies here

println!("{}", r);
} // r dies here

A reference must die before its referent!

14

The static lifetime

The only named lifetime is 'static—the lifetime of the whole
program
String slice literals have static lifetime. That is,

let s: &str = "hello";

means

let s: &'static str = "hello";

15

Lifetime variables

All other lifetimes are relative:

fn choose<'a>(x: &'a usize, y: &'a usize) −> &'a usize

{
if is_even(*x) {x}
else if is_even(*y) {y}
else {&0}

}

Why does &0 work? How does that have lifetime 'a?
Subtyping: &'static T <: &'a T.

16

Lifetime variables

All other lifetimes are relative:

fn choose<'a>(x: &'a usize, y: &'a usize) −> &'a usize {
if is_even(*x) {x}
else if is_even(*y) {y}
else {&0}

}

Why does &0 work? How does that have lifetime 'a?
Subtyping: &'static T <: &'a T.

16

Lifetime variables

All other lifetimes are relative:

fn choose<'a>(x: &'a usize, y: &'a usize) −> &'a usize {
if is_even(*x) {x}
else if is_even(*y) {y}
else {&0}

}

Why does &0 work? How does that have lifetime 'a?

Subtyping: &'static T <: &'a T.

16

Lifetime variables

All other lifetimes are relative:

fn choose<'a>(x: &'a usize, y: &'a usize) −> &'a usize {
if is_even(*x) {x}
else if is_even(*y) {y}
else {&0}

}

Why does &0 work? How does that have lifetime 'a?
Subtyping: &'static T <: &'a T.

16

Be careful, because it’s fragile

fn ref_even(n: &usize) −> &usize {
if is_even(*n) {n}
else {

let zero = 0;
&zero

}
}

fn ref_even(n: &usize) −> &usize {
if is_even(*n) {n}
else {

let zero = &0;
zero

}
}

17

