
EECS 211 Homework 1
Winter 2019

Due: January 17, 2019 at 11:59 PM
Partners: No; must be completed by yourself

Purpose

The goal of this assignment is to get you programming in C, includ-
ing simple I/O, separate compilation, and assert-based testing.

Preliminaries

Login to the server of your choice and cd to the directory where you This homework assignment
must be completed on Linux
using the T-Lab or Wilkinson
Lab machines. Each time you
login to work on EECS 211, you
need to run the dev command
(as set up in Lab 1).

keep your EECS 211 work. Then download and unarchive the starter
code, and change into the project directory:

$ curl $URL211/hw/hw01.tgz | tar zvx
...

$ cd hw01

You can check that you have correctly downloaded and configured
everything by building the project:

$ make all
...

3 warnings generated.

cc -o build/overlapped build/overlapped.o build/cir...

$

You will see warnings because several function definitions are incom-
plete, but the build should complete successfully.

Orientation

In this project, you will write:

• a tiny computational geometry library (src/circle.h and src/circle.c),

• a tiny client program that uses it (src/overlapped.c), and

• some tests for the library (test/test_circle.c).

Type definitions and function signatures for the library are pro- This multifile setup mirrors the
structure discussed in Lecture
3, so you may want to refer to
those slides for reference.

vided for you in src/circle.h; since the grading tests expect to interface
with your code via this header file, you must not modify src/circle.h
in any way. All of your code will be written in the three .c files.

The project also provides a Makefile with several targets:

https://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf
https://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab01.pdf
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lec/03separate.pdf
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lec/03separate.pdf

eecs 211 homework 1 2

target description
all builds everything * †

test builds and runs the tests †

build/test_circle builds (but doesn’t run) the tests
build/overlapped builds the client program
clean removes all build products †

* default † phony

Specifications

The project comprises two functional components, which are speci-
fied in the next two subsections.

The circle library

The circle library defines one struct type and three functions, as
follows:

• The circle structure type represents a circle positioned on a
Euclidean plane in terms its center (x and y coordinates) and its
radius.

• Function valid_circle(struct circle c) returns a bool indi-
cating whether circle c is valid. A circle is valid if and only if its
radius is positive.

• Function read_circle() parses a struct circle from the standard
input and returns it. It should expect the values of the three fields
in order: x, y, radius.

Exceptional cases: The returned circle must be fully initialized
even if scanf () fails due to bad or end of input. If the input ends or
is malformed, read_circle() returns a circle with center (0.0, 0.0)
and radius −1.0.

• Function overlapped_circles(struct circle, struct circle)

returns a bool indicating whether the two given circles overlap.
Circles are considered to overlap only if they contain some area in
common, not if they are merely tangent to each other.

The overlapped client program

The overlapped client program reads a first (“target”) circle. If there is
an error in reading the target circle, the program terminates with an
exit code of 1 to indicate an error.

Then the program reads as many subsequent (“candidate”) circles
as are provided by the user; for each valid circle read after the target

https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html
https://linux.die.net/man/3/scanf

eecs 211 homework 1 3

circle, it prints "overlapped\n" if the candidate circle overlaps the
target, or "not␣overlapped\n" if not. If the program reads an invalid
candidate circle, then it terminates with an exit code of 0 to indicate
success, printing nothing.

The program does not print anything else.

Here are two examples of running build/overlapped:

$ build/overlapped

0 0 5

0 2 1

overlapped

0 10 1

not overlapped

2019 211 -1

$

$ build/overlapped

1 0 1

0 1 0.4

not overlapped

0 1 0.41

not overlapped

0 1 0.414

not overlapped

0 1 0.415

overlapped

1 -1 0.415

overlapped

-2019 -211 -2

$

Reading documentation ef-
fectively can depend on un-
derstanding typesetting con-
ventions. In the transcripts on
the left, the bold text is what
the user types, and the medium

weight text is what the com-
puter responds with. Your
actual prompt will probably
differ from $, which is the con-
vention for printing Unix shell
prompts in documentation.

Hints

Definition of overlap for circles

Two circles overlap if the distance between their centers is less than You don’t actually need sqrt() to
do this, because this statement
is equivalent: Two circles over-
lap if the square of the distance
between their centers is less
than the square of the sum of
their radii.

the sum of their radii.

Strategy for the read_circle function

First define a struct circle variable, without initializer, to hold the
function’s result. Then, try to initialize its three fields using scanf (). If
scanf () is unable to convert all three doubles as indicated by its result
value, then initialize the struct circle to the invalid state {0.0,

0.0, -1.0} instead (per the specification above). Then, whether or
not the input succeeded, return the struct circle.

Algorithm for the overlapped program

Here is an algorithm you can use in src/overlapped.c:

1. Define a struct circle variable to hold the target circle, and
initialize it to the result of calling read_circle().

https://linux.die.net/man/3/scanf

eecs 211 homework 1 4

2. If the target circle is invalid according to valid_circle(), exit with From main, exiting can be ac-
complished by returning the
desired error code, but to exit
from another function one must
call the exit(3) function.

(Note that the “3” in exit(3) is
not the argument you should
pass, but the section of the Unix
manual system where docume-
nation for the exit function is
found. To see why this matters,
compare the result of running
man exit with the result of
running man 3 exit.)

an error code of 1.

3. Repeat indefinitely:

(a) Define a struct circle variable to hold the candidate circle,
and initialize it to the result of calling read_circle().

(b) If the candidate circle is invalid according to valid_circle(),
exit with an error code of 0.

(c) Use overlapped_circles in the condition of an if–else state-
ment to check whether the target circle overlaps the candidate
circle and print the correct message in either case.

To get an infinite loop that repeats some statements, use a for loop
with empty condition:

for (;;) {

// Statements to repeat go here.

}

Deliverables and evaluation

For this homework you must:

1. Implement the specification for the circle library from the previous
section in src/circle.c.

2. Implement the specification for the overlapped client program from
the previous section in src/overlapped.c.

3. Add more test cases for the overlapped_circles function pro-
vided by the circle library in test/test_circle.c.

In particular, file src/test_circle.c already contains two tests cases,
test_tangent and test_not_overlapped, both of which are called
from main. Your job is to add two more test cases, demonstrating
that:

• overlapped_circles returns true given different but overlap-
ping circles, and

• overlapped_circles returns true given the same circle for both
arguments.

Grading will be based on:

• the correctness of your implementations with respect to the specifi-
cations,

• the presence of the two required test cases, and

• adherance to the EECS 211 Style Manual.

https://linux.die.net/man/3/exit
http://users.eecs.northwestern.edu/~jesse/course/eecs211/style.html

eecs 211 homework 1 5

Submission

Homework submission and grading will use the GSC grading server.
You must upload any files that you create or change. For this home-
work, that will include src/circle.c, src/overlapped.c, and test/test_circle.c.
(You should not need to modify Makefile and you must not modify
src/circle.h.)

Submit using the command-line GSC client gsc(1). Instructions
are available in the submit211(7) manual page on the lab machines.
To view it, run:

$ man submit211

	Purpose
	Preliminaries
	Orientation
	Specifications
	Hints
	Deliverables and evaluation
	Submission

