
EECS 211 Homework 2
Winter 2019

Due: January 24, 2019 at 11:59 PM
Partners: No; must be completed by yourself

Purpose

The goal of this assignment is to get you programming with strings,
iteration, and dynamic memory.

Preliminaries

Login to the server of your choice and cd to the directory where you This homework assignment
must be completed on Linux
using the T-Lab or Wilkinson
Lab machines. Each time you
login to work on EECS 211, you
need to run the dev command
(as set up in Lab 1).

keep your EECS 211 work. Then download and unarchive the starter
code, and change into the project directory:

$ curl $URL211/hw/hw02.tgz | tar zvx
...

$ cd hw02

If you have correctly downloaded and configured everything then
the project should build cleanly:

$ make all
...

cc -o build/test_translate build/test_translate.o b...

$

Background

In this project, you will implement a clone of the standard Unix util-
ity tr(1), which is a filter that performs transliteration. Given two Filter programs copy their stan-

dard input to their standard
output while modifying it in
some way. For example grep(1)
prints only lines that match
some given pattern; head(1)
discards all but the first n lines.

equal-sized sets of characters, from and to, it replaces all occurrences
of characters appearing in from with the character in the correspond-
ing position in to.

The tr program takes the from and to sets as command-line argu-
ments. In the simplest case, they are strings of the same length:

$ echo 'Hello, world!' | build/tr e a
Hallo, world!

$ echo 'Hello, world!' | build/tr elo 310
H3110, w0r1d!

$ echo 'Hello, world!' | build/tr ',! ' ___ Characters that have special
meaning for the shell, such as
space, !, *, ?, $, and \, need to
be quoted in arguments.

Hello__world_

https://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf
https://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab02.pdf
https://linux.die.net/man/1/tr

eecs 211 homework 2 2

tr also understands ranges of characters and some backslash escape
sequences:

$ echo 'Hello, world!' | build/tr a-z A-Z
HELLO, WORLD!

$ echo 'Hello, world!' | build/tr 'a-zA-Z!' 'A-Za-z?'
hELLO, WORLD?

$ alias rot13 build/tr a-zA-Z n-za-mN-ZA-M The shell command alias lets
you define a shorter name for a
longer command. (If your shell
is not tcsh(1) then the syntax
for alias may be different. In
bash(1) and zsh(1), it would be
alias rot13='. . . '.)

$ echo 'Hello, world!' | rot13
Uryyb, jbeyq!

$ echo 'Hello, world!' | rot13 | rot13
Hello, world!

$ echo 'Hello, world!' | build/tr ' ' '\n'
Hello,

world!

$

The above examples won’t work until you’ve finished the assign-
ment, but if you replace build/tr with just tr, you should get the
system’s /usr/bin/tr, which will do the same thing.

Orientation

As in Homework 1, your code is divided into three .c files:

• Most significant functionality will be defined in the “translate
library,” src/translate.c.

• Tests for those functions will be written in test/test_translate.c.

• The main() function that implements the tr program will be de-
fined in src/tr.c.

Function signatures for src/translate.c are provided for you in src/trans-

late.h; since the grading tests expect to interface with your code via
this header file, you must not modify src/translate.h in any way. All
of your code will be written in the three .c files.

The project also provides a Makefile with several targets:

target description
all builds everything * †

test builds and runs the tests †

build/test_translate builds (but doesn’t run) the tests
build/tr builds the tr program
clean removes all build products †

* default † phony

https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html

eecs 211 homework 2 3

Specifications

The project comprises two functional components, which are speci-
fied in this section. First, though, we define charsets (character sets).

Character sets

The tr program uses charsets to specify which characters to replace
and what to replace them with. The C type of a charset is just char*—
that is, a C string—but they can be represented in two forms having
different interpretations:

• A literal charset is just a sequence of characters, each standing
for itself. For example, interpreted as a literal charset, the string
"a-e" contains the three characters 'a', '-', and 'e' at indices 0,
1, and 2, respectively. In a literal charset, no character has special
meaning.

• An unexpanded charset may contain ranges, written “c-d”, and
escape sequences, written “\c”.

– The range “c-d” stands for the interval of characters from 'c'
to 'd', inclusive. (This means that if 'c' > 'd' then the range is
empty, and if 'c' == 'd' then the range contains only 'c'.)

– If the escape “\c” is valid C string literal escape sequence, then
it has the same meaning for tr as in C; otherwise it just stands We have provided you a func-

tion mapping character 'c' to
the meaning of \c, so you don’t
have to figure that part out.

for character 'c' itself.

Here is a table showing several unexpanded charsets along with
their literal expansions:

unexpanded literal
"abc" "abc"

"a-e" "abcde"

"a-e_" "abcde_"

"a-df-i" "abcdfghi"

"\\t" (2 characters) "\t" (1 character)

The tr program takes charsets in unexpanded form, and must
expand them to literal form before it can do its work.

The translate library

The translate library is responsible for expanding charsets from
unexpanded to literal form, and for using a pair of literal charsets to
translate a string. It provides a function for each of these purposes
that will be used in src/tr.c. Additionally, the header file exposes two

https://en.cppreference.com/w/c/language/escape

eecs 211 homework 2 4

helper functions to facilitate testing. Thus, src/translate.c defines four
functions:

• Function expand_charset(const char*) takes a charset in unex-
panded form and expands it, returning it in literal form.

The returned charset is allocated by malloc(3), which means that See the Reference section below
for more explanation of what
this means.

the caller is responsible for deallocating it with free(3) when fin-
ished with it.

Error case: If expand_charset() is unable to allocate memory then
it returns the special pointer value NULL.

• Function charset_length(const char*) is a helper to expand_charset()

that determines how long the literal result of expanding its argu-
ment will be.

• Function translate(char* s, const char* from, const char*

to) takes a string to modify (s) and two literal charsets (from
and to). Each character in string s that appears in charset from is
replaced by the character at the same index in charset to.

To be precise: For each index i in s, if there is some j such
that s[i] == from[j] (and there is no k < j such that s[i] ==

from[k]), then s[i] is replaced by to[j].

Undefined behavior: Function translate() has an unchecked
precondition whose violation will result in undefined behavior. In
particular, for it to work properly, from must not be a longer string
than to. However, translate() should not check this condition, as
ensuring it is the caller’s responsibility.

• Function translate_char(char c, const char* from, const

char* to) is a helper to function translate(). It takes a character
to translate (c) and two literal charsets (from and to). It returns the
translation of character c as given by the two charsets.

To be precise: If there is some j such that c == from[j] (and there
is no k < j such that c == from[k]), then this function returns
to[j]; but if there is no such j then it returns c unchanged.

Undefined behavior: Function translate_char() has the same
unchecked precondition as function translate(), with the same
results if violated. (This is a natural consequence of translate()
calling translate_char().)

The tr program

The tr program must be run with two command-line arguments. If
run with more or fewer than two, it prints the message

eecs 211 homework 2 5

Usage: tr FROM TO < INPUT_FILE

to stderr, where tr is replaced by argv[0] (the actual name that the
program was called with), and then exits with error code 1.

The arguments FROM (argv[1]) and TO (argv[2]) are unexpanded
charsets, so tr must expand them to literal charsets. If the lengths of
the two literal charsets differ (post-expansion, that is) then it prints
the message

tr: error: lengths of FROM and TO differ

to stderr, where again tr is replaced by argv[0], and then exits with
error code 2.

Now that argument checking has succeeded, tr begins filtering. The examples in the Background
section involve sending your
build/tr program one line at a
time. Be sure to test it inter-
actively, too, to make sure it
handles multiple lines correctly:

$ build/tr a-z A-Z
Be sure to test
BE SURE TO TEST

your program
YOUR PROGRAM

interactively.
INTERACTIVELY.

^D
$

For each line read from the standard input, it translates the line ac-
cording to the literal expansions of FROM and TO and prints the result.
When there is no more input to process, the program terminates
successfully.

Reference

Accepting command-line arguments

When running a C program from the command line, the user can
supply it with command-line arguments, which the program’s main()

function then receives as an array of strings. In particular, main() can
be declared to accept two function arguments, as follows:

int main(int argc , char* argv []);

Then argc will contain the number of command-line arguments
(including the name of the program itself in argv[0]), and argv will
contain the comnand line arguments themselves.

For example, if a C program is run like

$ my_prog foo bar bazzz

then argc is 4 and argv is the array

{

"my_prog",

"foo",

"bar",

"bazzz"

}.

eecs 211 homework 2 6

Reading input a line at a time

The C programming language doesn’t provide an easy way to read It provides gets(3), which is easy
to use but inherently unsafe,
and fgets(3), which can be used
safely but requires you to spec-
ify a limit on the length of the
line.

a line of input whose length is unknown, so I have provided you a
small library, lib211, with your Homework 2 starter code. The lib211.h

header declares a function read_line() that reads a line from the
standard input and returns it.

The function returns a character array allocated by malloc(3), which
means that the caller is responsible for deallocating it with free(3)
when finished with it. See the next subsection for more on this
topic, and see the read_line(3) manual page on the lab machines for
information on the read_line() function.

Managing memory with malloc(3) and free(3)

In Homework 1, all memory used by your program was allocated
and deallocated automatically. But to work with strings, especially
strings whose length is not known when the program is written, we
need a different technique.

Function malloc() (from <stdlib.h>) takes the number of bytes that The result of malloc() has type
void*, which is the type of a
pointer whose referent type is
unknown. In C (but not C++),
void* converts automatically
to and from any other pointer
type.

you need and attempts to allocate that much memory. For example,
we can allocate enough memory for one int, or for an array of N ints:

int* just_one = malloc(sizeof(int));

int* several = malloc(N * sizeof(int));

If malloc() succeeds, it returns a pointer to the newly allocated mem-
ory, which can be used to hold any type that fits. The memory this
pointer points to is uninitialized, so you must initialize it to avoid
undefined behavior. When you are done with this memory, you must Failure to free memory that

you no longer need can lead
to a memory leak, which causes
your program to use more
memory than it should, or even
run out. But worse things can
happen: freeing a pointer twice,
or dereferencing a pointer that
has already been freed, causes
undefined behavior.

free it by passing the pointer to free().
If malloc() fails to find sufficient memory, which it can, it returns

the special pointer value NULL, which is a valid pointer that points
nowhere. Dereferencing NULL is undefined behavior, but you can
compare it using the == operator. Consequently, every call to malloc()
must be followed by a NULL check. We provide this call to malloc() and
the obligatory NULL check in src/translate.c:

char* result = malloc(charset_length(src) + 1);

char* dst = result;

if (result == NULL) return NULL;

Two things to note about the above malloc() call:

• We are allocating one more byte than the length that src will
expand to, because we need an extra byte to store the string’s '\0'

terminator.

https://cwe.mitre.org/data/definitions/242.html

eecs 211 homework 2 7

• There is no need to multiply the desired number of chars by
sizeof(char) because sizeof(char) is always 1.

Working with C strings

When testing your functions, you might be tempted to write asser-
tions like this:

assert(expand_charset("a-e") == "abcde");

But there are three problems with this.
First, it leaks memory, because expand_charset() allocates mem-

ory and the code above doesn’t free it. To fix that, we need to store
the result of expand_charset() in a variable, which lets us refer to it
twice:

char* actual_result = expand_charset("a-e");

assert(actual_result == "abcde");

free(actual_result);

However, this still won’t work, because when you use == to compare
pointers, it compares the addresses, not the pointed-to values. And the
address returned by expand_charset() will never be the same as the
address of a string literal.

Instead, to compare strings, we need to use the strcmp(3) function
(from <string.h>), which compares them character by character.
You may expect that strcmp() would return true for equal strings
and false for unequal strings, but actually it does something more
useful: strcmp(s1, s2) determines the lexicographical ordering for Lexicographical order is a gen-

eralization of alphabetical order
to sequences of non-letters (or
more than just letters). strcmp()
compares the numeric values
of chars, which means that
'a' < 'b' and 'A' < 'B', but
also 'B' < 'a' and '$' < ','.

s1 and s2. If s1 should come before s2 when sorting then it returns a
negative int; if s1 should come after s2 then it returns a positive int.
If they are equal, it returns 0. Thus we should write:

char* actual_result = expand_charset("a-e");

assert(strcmp(actual_result , "abcde") == 0);

free(actual_result);

This almost works! In fact, it usually will work. But to be completely
correct, we need to deal with the possibility that expand_charset()
fails to allocate memory and returns NULL. In that case, strcmp() will
deference NULL, which is undefined behavior. Thus, we need to
ensure that actual_result is not NULL before we try to use the string
that it points to:

char* actual_result = expand_charset("a-e");

assert(actual_result);

assert(strcmp(actual_result , "abcde") == 0);

free(actual_result);

https://linux.die.net/man/3/strcmp
https://en.wikipedia.org/wiki/Lexicographical_order

eecs 211 homework 2 8

Here are some more functions from <string.h> that you may find
useful:

char* strchr(const char* s, int c) Why does strchr() take an int

rather than a char? Many C
functions take a character as
type int for obscure historical
reasons.

searches string s for the first occurrence of (char)c, returning a
pointer to the occurrence if found or NULL if not

char* strcpy(char* dst, const char* src)

copies string pointed to by src into string pointed to by dst

(which must have sufficient capacity, or you’ll get UB)

size_t strlen(const char*)

computes the length of a string (not including the '\0')

Hints

In this section, we provide suggestions, such as algorithms, for
writing the necessary functions. These hints are given in what we
expect will be the best order of implementation. It’s a very good idea
to test each function as you write it, rather than testing them all at
the end, because you will find bugs sooner that way.

Algorithm for the charset_length() function

The charset_length() function scans its argument string (an unex-
panded character set) while counting how many characters it will
take when expanded. Thus, you need two variables: one to count, To scan a string you can use

either an index size_t i or
pointer char* p. If you hold
onto the original string s then
the two approaches are inter-
changeble, since p == s + i, or
equivalently i == p - s.

and one to keep track of the position while scanning the string. Start
the count at 0 and the position at the beginning of the argument
string. Then iterate and evaluate the following conditions for each
iteration:

• If the character at the current position is '\0', then you’ve reached
the end and should return the count.

• If the character at the next position is '-', and the character at the
position after that is not '\0', then you’ve found a range. If we This implies that a hyphen at

the beginning or end of the
string, or immediately follow-
ing the end of a character range,
is interpreted literally rather
than denoting a range.

call the character before the hyphen start and the character after
the hyphen end, then we can determine the length of the range
by comparing the two characters: If start > end then the range is
empty; otherwise the length of the range is end - start + 1. Add
this to the count, and then advance the current position by 3 to get
to the first character past the right side of the range.

• If the character at the current position is '\\' (a single backslash), This case should be checked
after the range case, which im-
plies that the literal expansion
of unexpanded charset “\-_” is
“\]^_”, not “-_”.

and the character at the next position is not '\0' then you have
found an escape sequence. Its expanded length is 1, so add that

https://stratadoc.stratus.com/vos/15.1.1/r040-02/wwhelp/wwhimpl/common/html/wwhelp.htm?context=r040-02&file=ch6r040-02o.html
https://stratadoc.stratus.com/vos/15.1.1/r040-02/wwhelp/wwhimpl/common/html/wwhelp.htm?context=r040-02&file=ch6r040-02o.html

eecs 211 homework 2 9

much to the count, and advance the current position by 2 to get to
the first character after the escape sequence.

• Otherwise, the character at the current position will be copied as
is, so increment the count by 1 and advance the current position to
the next character.

Algorithm for the expand_charset() function

Like charset_length(), the expand_charset() function scans its argu-
ment string (an unexpanded character set), but instead of counting, it
copies the characters into a fresh string, expanding ranges and escape
characters into their literal meanings.

The first thing it must do is allocate memory for its result. We This function is probably the
trickiest part of the whole
homework. One way to develop
your code would be to hold off
writing this function and move
forward, while temporarily
considering all input charsets to
be literal. It’s not hard to add
a call to expand_charset() to
src/tr.c’s main() function once
you get it working.

have provided you code that calls charset_length() to find out how
much memory is needed, allocates the memory, and checks that the
allocation succeeded. Then the algorithm works by scanning the
argument string while storing characters into the result string. To do
this, you will likely need three variables: one to remember the start
of the result string in order to return it; one to keep track of your
position in the unexpanded character set being scanned (the source);
and one to keep track of your position in the result string being filled
in (the destination).

The control logic of the scanning-and-copying loop is the same as
in the charset_length() function, but the actions at each step differ:

• If the character at the current source position is '\0', then you’ve
reached the end. Don’t forget to store a '\0' at the destination
position (which should be the end of the result string) before
returning.

• If the character at the next source position is '-', and the character
at the position after that is not '\0', then you’ve found a range. If
we call the character before the hyphen start and the character
after the hyphen end, then we can generate the range by iteration,
incrementing start until it passes end. That is, so long as start

<= end, we want to store start to the destination position, advance
the destination position, and increment start. Once we’ve fully To avoid undefined behavior

here, you should store start

and end as ints, not chars.
To understand why, consider
what would happen if end were
CHAR_MAX.

expanded the range, we advance the source position past it (by
adding 3).

• If the character at the current source position is '\\', and the char-
acter at the next source position is not '\0' then you have found
an escape sequence. Its expansion is given by interpret_escape(c)

(provided in src/translate.c), where c is the character following

eecs 211 homework 2 10

the backlash. Store the expansion to the destination position, ad-
vance the destination position, and advance the source position
past the escape sequence (by adding 2).

• Otherwise, the character at the current position stands for itself, so
store it at the current destination position and then advance both The traditional C way to do this

is *dst++ = *src++;.the source and destination positions by 1.

Algorithm for the translate_char() function

The translate_char() function takes a character to translate (c) and
two literal charsets (from and to). The idea is to scan charset from
searching for c. If we find c at some index i then return to[i]. If we
get to the end of from without finding c then return c unchanged.

Algorithm for the translate() function

The translate() function takes a string to translate in place (s) and
two literal charsets (from and to). The idea is to iterate through each
position in s, replacing each character with its translation according
to translate_char().

Algorithm for the tr program

The tr program has three phases: first it validates and interpets its
arguments, then it transforms its input to its output, and then it
cleans up its resources.

We’ve provided you with the first check, for the correct number
of arguments. This serves as an example of how to use fprintf (3) and
stderr(4) for printing error messages.

Next, use expand_charset() to expand both command-line argu- Two calls to expand_charset()

mean you will need two calls to
free() in order to clean up in
the end.

mente argv[1] and argv[2] into literal charsets. Since expand_charset()

returns NULL if it cannot allocate memory, you need to NULL-check
both results; if it fails, print the error message (using OOM_MESSAGE

and argv[0]) and exit with error code 2.
If character set expansion succeeds but the charsets, once ex-

panded, don’t have the same length, it is an error; print the specified
error message (LENGTH_MESSAGE) to stderr and exit with error code 2.

Now, if there are no errors then we are ready to iterate over the
input lines until read_line() returns NULL, translating each line and
printing the result. Since each input line read by read_line() is
allocated by malloc(), you need to free each line with free() when
you are done with it. This should be straightforward because you
process one line at a time and never need to hold onto one longer.

eecs 211 homework 2 11

Deliverables and evaluation

For this homework you must:

1. Implement the specification for the translate library from the
previous section in src/translate.c.

2. Implement the specification for the tr program from the previous
section in src/tr.c.

3. Add more test cases to test/test_translate.c in order to test the four
functions that you defined in src/translate.c.

The file test/test_convert.c already contains two tests cases for each of
the four functions, and helper functions to facilitate testing for two
of them. Because the functions you are implementing are complex
and have many corner cases, you need to add many more tests for
each. Try to cover all the possibilities, because for this week’s self
evaluation we will spot-check your test coverage by asking for just a
few particular test cases. You can’t anticipate which we’ll ask about,
so you should try to cover everything.

Grading will be based on:

• the correctness of your implementations with respect to the specifi-
cations,

• the presence of sufficient test cases to ensure your code’s correct-
ness, and

• adherance to the EECS 211 Style Manual.

Submission

Homework submission and grading will use the GSC grading server.
You must upload any files that you create or change. For this home-
work, that will include src/translate.c, src/tr.c, and test/test_translate.c.
(You should not need to modify Makefile and you must not modify
src/translate.h.)

Submit using the command-line GSC client gsc(1). Instructions
are available in the submit211(7) manual page on the lab machines.
To view it, run:

$ man submit211

http://users.eecs.northwestern.edu/~jesse/course/eecs211/style.html

	Purpose
	Preliminaries
	Background
	Orientation
	Specifications
	Reference
	Hints
	Deliverables and evaluation
	Submission

