EECS 211 Homework 3

Winter 2019

Due: January 31, 2019 at 11:59 PM

Partners: Yes; register on GSC before submission

Purpose

The goal of this assignment is to get you programming with more
complex allocation patterns than in the previous homework.

Preliminaries

Login to the server of your choice and cd to the directory where you
keep your EECS 211 work. Then download and unarchive the starter
code, and change into the project directory:

$ curl $URL211/hw/hw@3.tgz | tar zvx

$ cd hwo3

If you have correctly downloaded and configured everything then
the project should build cleanly:

$ make all

cc -0 build/count build/count.o build/libvc.o build/1...
$

Introduction

In this project, you will implement a library vc for counting votes and
a small client program count that exercises the library.

An important idea throughout this assignment is to adhere to the
specified ownership protocol for managing memory. In the library,
you will implement operations for an abstract type vote_count_t
that points to a mapping from candidate names to their vote counts.
A vote_count_t object owns the strings that hold the names of the
candidates, so when it is freed they must be freed as well.

Note that this is the first part
of a two-part assignment, and
you will continue with the
same partner (and code) for the
second part.

This homework assignment
must be completed on Linux
using the T-Lab or Wilkinson
Lab machines. Each time you
login to work on EECS 211, you
need to run the dev command
(as set up in Lab 1).

https://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf
https://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab03.pdf

EECS 211 HOMEWORK 3 2

Orientation

As in previous homeworks, your code is divided into three .c files:

® Most significant functionality will be defined in the “vc library,”
src/libve.c.

e Tests for those functions will be written in test/test_vc.c.

® The main() function that implements the count program will be
defined in src/count.c.

Function signatures for src/libvc.c are provided for you in src/libve.h;
since the grading tests expect to interface with your code via this
header file, you must not modify src/libve.h in any way. All of your
code will be written in the three .c files.

The project also provides a Makefile with several targets:

target description
all builds everything "
test builds and runs the tests

build/test_vc builds (but doesn’t run) the tests
build/count builds the count program

clean removes all build products '

" default phony

Specifications

The project comprises two functional components, which are speci-
fied in the next two subsections.

The count program

The count program reads candidate names, one per line, from the
standard input. It counts the number of occurrences of each candi-
date name, and when the input ends, it prints a table of candidate
names and counts to the standard output, like so:

$ build/count

kennedy

nixon

nixon

kennedy

kennedy

AD In the terminal, pressing

kennedy 3 Control-D (only at the be-

nixon 2 ginning of a line) sends the
end-of-file signal.

https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html

EECS 211 HOMEWORK 3 3

The count program is limited in how many different candidates
it can handle, and the limit is defined using a C preprocessor macro
MAX_CANDIDATES in the src/libvc.h header file. When count is given
more different candidates than it can handle, it begins dropping
votes. Each time it sees a candidate that it hasn’t seen before and
doesn’t have room for, it prints a message to stderr. At the end, it
prints the total count of dropped votes to stderr before terminating
with exit code 2.

So for example, if MAX_CANDIDATES were only 2, it would behave
like this:

$ build/count

perot

bush

clinton

build/count: vote dropped: clinton I'm using underlining to indi-

clinton cate what the program prints to
build/count: vote dropped: clinton the standard error.

clinton

build/count: vote dropped: clinton

bush

“D

perot 1

bush 2

build/count: 3 vote(s) dropped

$ echo $? The special shell variable $?
2 contains the exit code of the

$ most recently run command.

If the program fails to allocate memory, it exits with a message
printed to stderr and an exit code of 1.

The vc library

The header src/libvc.h defines one type, intended to represent a map-
ping from candidate names to vote counts:

typedef struct vote_count* vote_count_t;

This type is abstract in the sense that other files that include
src/libve.h will know that type vote_count_t is a pointer to some
struct type, but they won’t know anything about the definition of
that struct. This means that they can create, manipulate, and destroy
struct vote_count objects only via the functions declared in the
same header.

We will refer to the object that a vote_count_t points to as a vote
count map. The src/libvc.h header declares eight functions for working

EECS 211 HOMEWORK 3 4

with vote count maps: two for managing their lifecycles, one for
modifying them, and five for querying them. The functions are:

® vote_count_t vc_create(void) allocates a new, empty vote count
map on the heap and returns a pointer to it. Every successful call
to ve_create() allocates a new object that must subsequently be
deallocated exactly once using vc_destroy.

Ownership: The caller takes ownership of the result.
Errors: Returns NULL if memory cannot be allocated.
® void vc_destroy(vote_count_t vc) deallocates all memory asso-

ciated with vc. vc may be NULL, in which case this function does
nothing.

Ownership: Takes ownership of vc.

Errors: If vc has already been destroyed or wasn’t returned by
ve_create() in the first place then this function has undefined
behavior.

e size_tx vc_update(vote_count_t vc, const charx name) returns
a pointer to the count for candidate name. If name is already present
in vc this will be a pointer to the existing count; otherwise, vc is
extended to map name to a count of o before returning the pointer
to that count.

Ownership:
— Borrows name transiently, which means that it does not store it

anywhere. (In other words, vc must still be valid even after name
is not.)

— Borrows vc transiently.
— The returned pointer is borrowed from vc and is valid until vc
is destroyed.
Errors:
— Returns NULL if name is not present in vc and cannot be added
because vc is full.
— Prints a message to stderr and exits with code 1 if we need to
allocate a copy of name and allocation fails.
® size_t vc_lookup(vote_count_t vc, const char* name) looks up
the count for candidate name; returns o if not found.
Ownership: Borrows both arguments transiently.
e size_t vc_total(vote_count_t vc) returns the total number of
votes cast.

Ownership: Borrows vc transiently.

EECS 211 HOMEWORK 3 5

e const charx vc_max(vote_count_t vc) returns the name of the
candidate with the most votes. In case of a tie, returns the candi-
date who was added to vc earlier.

Returns NULL if vc contains no candidates with more than zero
votes.

Ownership:

— Borrows vc transiently.

— The returned pointer is borrowed from vc and is valid until vec
is destroyed.

e const char* vc_min(vote_count_t vc) returns the name of the
candidate with the fewest (non-zero) votes. In case of a tie, returns
the candidate who was added to vc later.

Returns NULL if vc contains no candidates with more than zero
votes.

Ownership:

— Borrows vc transiently.

— The returned pointer is borrowed from vc and is valid until vc
is destroyed.

® void vc_print(vote_count_t vc) prints a summary of the vote
counts on stdout. The counts are printed one candidate per line
in the order they first were added. The candidate names are left-
aligned in a 20-character column, followed by a single space, and
then the counts right-aligned in a 9-character column.

Ownership: Borrows vc transiently.

Note that libuc is not responsible for maintaining any informtion
about dropped votes. That counting must be handled by the client
program.

Reference

Alignment using printf(3)

For printing the table of counts, you will want to use printf(3)’s
padding and alignment capabilities. In particular:

¢ A field may be padded to n characters by adding the number n
between the % and the type specifier (e.g., s, d, or zu). For example,
"%8d" formats an int using (at least) eight characters.

¢ By default, fields are padded with spaces on the left, in order to
right align them. Using a negative number will left align the field
instead. For example, "%-8d" will format ints left-aligned in an
eight-character column.

Formatting to strings with snprintf(3)

For testing libuc’s behavior when full, you will need to generate
MAX_CANDIDATES + 1 different candidate names. (Your tests should
still work when I redefine MAX_CANDIDATES.) The snprintf(3) function
is like printf(), but instead of printing to stdout, it takes a char* and
prints into the buffer that it points to. See its manual page for more
information.

Hints

In this section we provide suggestions, such as some useful helper
functions and help interpreting the specification.

Iterating over a vote count map

Most of the functions in src/libve.c need to iterate over the array that
their given vote_count_t points to. Be careful, because this iteration
requires different termination conditions in different places. In
particular, it always needs to stop before MAX_CANDIDATES, but often it
is also necessary to stop when reaching a NULL candidate name.

Representation invariant

If there are n candidates mapped in vc then the candidate fields of
the first n elements of vc must contain their names, and the remain-
ing candidate fields (if n < MAX_CANDIDATES) must be NULL. This is so
that you know when to stop when searching for a candidate or for a
free slot.

The first n count fields, corresponding to the n candidate names,
must contain those candidates’ counts. It does not matter what the
remaining (MAX_CANDIDATES —) count fields contain (or even whether
they are initialized), since they do not store any information until
their corresponding candidate fields are non-NULL.

Ownership strategy

A vote count map owns the strings that store the candidate names,
but the vc_update() function merely borrows the name that it is
given. This has several implications:

EECS 211 HOMEWORK 3 6

In addition to the buffer to
format into, snprintf() takes an
upper limit on the number of
characters to store; an older
function, sprintf(3), does not
take such a limit. Why might
that be a bad idea?

An easy way to use snprintf() is
to stack-allocate a sufficiently
large char array and then use
sizeof the array for the limit.

To work properly, all of the
functions in src/libvc.c must col-
laborate to maintain each vote
count map in a consistent state.

https://linux.die.net/man/3/snprintf

¢ In order to store the name of a candidate that it has not yet seen,
the implementation of the vc_update() function needs to make its
own copy of the name parameter on the heap.

e (Clients of vc_update() are free to deallocate or reuse the name
parameter that they pass to vc_update() as soon as vc_update()
returns.

* Properly deallocating the memory associated with a vote_count_t
(as in vc_destroy()) means deallocating all of the strings that it
owns.

Strategy for the count program

The count program should start by allocating a vote count map,
terminating with an error message on stderr and exit code of 1 if
allocation fails. (Use the predefined 0OM_MESSAGE as your format
string.)

Next, it should to read a line at a time using read_line(3) until end-
of-file. Each string returned by read_line() is a candidate name and
should be counted in the vote count map, unless calling vc_update()
indicates that the vote count map is full. (Use DROP_MESSAGE to format
the required warning when dropping a vote.) Don’t forget to free
each string allocated by read_line().

Once there are no more votes to count, it should print the vote
summary and deallocate the vote count map.

Finally, if any votes were dropped, print a final warning (use
FINAL_MESSAGE) before terminating with exit code 2. Of course, if no
votes were dropped, the exit code should be o.

Helper functions

You may factor the required functions however you like, but when
writing our solution, we found the following helper functions to be,
well, helpful:

// Returns a pointer the first element of ‘vc®
// whose ‘candidate‘ matches ‘name‘, or NULL if
// there is no such element.

static struct vote_countx*
vc_find_name(vote_count_t vc, const char* name)

// Returns a pointer to the first element of
// ‘vc' whose ‘candidate® is NULL, or NULL if
// ‘vc’ is full.

static struct vote_countx

EECS 211 HOMEWORK 3 7

vc_find_empty(vote_count_t vc);

// Clones a string onto the heap, printing a
// message to stderr and exiting with code 1
// if malloc() fails.

static charx

strdup_or_else(const charx src);

The storage class static makes a function definition local to the .c
file it is written in, so static should be applied to all helper func-
tions.

Deliverables and evaluation
For this homework you must:

1. Implement the specification for the vc library in src/libve.c.
2. Implement the specification for the count program in src/count.c.

3. Add more test cases to test/test_vc.c in order to test the eight
functions that you defined in src/libve.c.

The file test/test_vc.c contains two test cases in order to give you an
idea how to write them, but you need to add many more tests. Try to
cover all the possibilities, because for this week’s self evaluation we
will spot-check your test coverage by asking for just a few particular
test cases. You can’t anticipate which we’ll ask about, so you should
try to cover everything.

Grading will be based on:

¢ the correctness of your implementations with respect to the specifi-
cations,

¢ the presence of sufficient test cases to ensure your code’s correct-
ness, and

¢ adherance to the EECS 211 Style Manual.

Submission

Homework submission and grading will use the GSC grading server.
You must upload any files that you create or change.

For this homework, that will include src/libve.c, src/count.c, and
test/test_vc.c. (You should not need to modify Makefile and you must
not modify src/libve.h.)

If you work with a partner then you must register your partner-

EECS 211 HOMEWORK 3 8

Be careful with partner regis-
tration, because once a partner
request is accepted, undoing

it requires an appeal to the
instructor.

http://users.eecs.northwestern.edu/~jesse/course/eecs211/style.html

ship before submitting. There are two steps to this: one partner
must create a partner request with the gsc partner request command,
and then the other partner must accept that request using the gsc
partner accept command. You need to specify each other’s NetIDs
in these commands. You can list outstanding partner requests with
the gsc status command and cancel them with the gsc partner
cancel command. See the gsc(1) manual page for details.

Once a partner request is accepted, you and your partner’s submis-
sions are joined together. Files uploaded by one partner will appear
to both. This means only one of you needs to submit.

EECS 211 HOMEWORK 3 9

	Purpose
	Preliminaries
	Introduction
	Orientation
	Specifications
	Reference
	Hints
	Deliverables and evaluation
	Submission

