
EECS 211 Homework 4
Winter 2019

Due: February 13, 2019 at 11:59 PM
Partners: Yes; register on GSC before submission

While this is the second part of
a two-part assignment, you are
free to choose the same partner,
a new partner, or no partner. If
you work with a partner, you
are free to use either your HW3

libvc.c, their libvc.c, or a solution
libvc.so (as explained below) to
test your code.

Purpose

The goal of this assignment is to solidify your C programming skills
before moving on to C++.

Preliminaries

Login to the server of your choice and cd to the directory where you This homework assignment
must be completed on Linux
using the T-Lab or Wilkinson
Lab machines. Each time you
login to work on EECS 211, you
need to run the dev command
(as set up in Lab 1).

keep your EECS 211 work. Then download and unarchive the starter
code, and change into the project directory:

$ curl $URL211/hw/hw04.tgz | tar zvx
...

$ cd hw04

If you have correctly downloaded and configured everything then
the project should build cleanly:

$ make all
...

cc -o build/irv build/irv.o build/lib211.o build/...

$

Background

“Instant-runoff voting (IRV),” according to Wikipedia,

is a type of preferential voting method used in single-seat elections
with more than two candidates. Instead of voting only for a single
candidate, voters in IRV elections can rank the candidates in order of
preference. Ballots are initially counted for each elector’s top choice,
losing candidates are eliminated, and ballots for losing candidates
are redistributed until one candidate is the top remaining choice of a
majority of the voters. When the field is reduced to two, it has become
an “instant runoff” that allows a comparison of the top two candidates
head-to-head.

For an example of running the IRV algorithm, consider an election
in which there are three candidates running and five voters. The
initial ballots are as follows:

https://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf
https://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab04.pdf
https://en.wikipedia.org/wiki/Instant-runoff_voting

eecs 211 homework 4 2

1. Abbott
2. Borden
3. Campbell

1. Campbell
2. Abbott
3. Borden

1. Borden
2. Campbell
3. Abbott

1. Abbott
2. Borden
3. Campbell

1. Campbell
2. Abbott
3. Borden

We count the first vote on each ballot, after which the vote counts
are 2 for Abbott, 2 for Campbell, and 1 for Borden. No one has an
outright majority, so the last-place candidate, Borden, is eliminated.
Thus, in the second round of counting, the ballots are:

1. Abbott
2. Borden
3. Campbell

1. Campbell
2. Abbott
3. Borden

1. Borden
2. Campbell
3. Abbott

1. Abbott
2. Borden
3. Campbell

1. Campbell
2. Abbott
3. Borden

On the ballot where Borden was leading, now Campbell takes the
lead. We count the first remaining vote on each ballot, giving 3 to
Campbell and 2 to Abbott. Campbell has a majority, and is therefore
the winner.

Given n candidates, the algorithm may take as many as n − 1
rounds of counting and elimination to reach a winner.

Orientation

Your code will be divided into several .c files:

• Functions on ballots are declared in src/ballot.h, and you must
implement them in src/ballot.c. Unit tests for these functions should
be written in test/test_ballot.c.

• Functions on collections of ballots, including the IRV algorithm,
are declared in src/ballot_box.h, and you must implement them in
src/ballot_box.c. Unit tests for these functions should be written in
text/test_ballot_box.c.

• The main() function implementing the irv program is already
written for you in src/irv.c.

The code in src/ballot.c and src/ballot_box.c depends on libvc, but the
src/libvc.c included in the starter code is incomplete. You may place
your own libvc.c in your src directory, or you may edit your Makefile

to use our solution libvc.so instead. To do so, you must change the The .so extension stands for
shared object. As the standard
format for libraries on Unix sys-
tems, it’s essentially a collection
of functions from one or more
.o files that other programs can
call.

definitions of two Make variables:

• Change the definition of LDFLAGS to -L$(TOV_PUB)/lib -lvc from
blank.

• Remove the line containing “build/libvc.o \” from the definition
of COMMON_OBJ.

Together, these changes will cause your code to be linked against our
shared library, rather than depending on your own src/libvc.c.

eecs 211 homework 4 3

Make targets

The project provides a Makefile with several targets:

target description
all builds everything * †

test builds and runs all tests †

build/test_ballot builds the ballot tests
build/test_ballot_box builds the ballot box tests
build/irv builds the irv program
clean removes all build products †

* default † phony

Specifications

The project comprises three functional components, which are speci-
fied in the next three subsections.

The irv program

The irv program, as shown in the margin to the right, reads ballots $ build/irv
Abbott
Borden
Campbell
%
Campbell
Abbott
Borden
%
Borden
Campbell
Abbott
%
Abbott
Borden
Campbell
%
Campbell
Abbott
Borden
^D
CAMPBELL

$

from the standard input, standardizes names to remove all chars
that are not uppercase letters, runs the IRV algorithm, and prints the
name of the winner.

The only other thing that irv may print is an out-of-memory error
message if malloc fails.

The format of the input is as follows. Each candidate’s name
appears on its own line, with the candidates on each ballot listed
in order. Each ballot is terminated by a percent sign (%) on a line by
itself, except for the last ballot, which is terminated by EOF.

Like count from HW3, the irv program is limited in how many
different candidates it can handle, and as before, the limit is defined
using a C preprocessor macro MAX_CANDIDATES in the src/libvc.h

header file. Note, however, that if you are using our solution libvc.so,
its compiled-in MAX_CANDIDATES value will continue to be 16, even if
you change the value in your own src/libvc.h.

If irv sees more different candidates than it can handle, it exits
with error code 3. If irv fails to allocate memory, it exits with a mes-
sage printed to stderr and an exit code of 1.

src/ballot.c

In this file, you will implement a ranked-choice ballot as a heap-
allocated struct containing an array of candidate names. When ini-

https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html

eecs 211 homework 4 4

tially added to the ballot, names are active, but they may be eliminated
from the ballot as the IRV algorithm proceeds.

The header src/ballot.h defines one type, intended to represent a
single voter’s ranked-choice ballot.

typedef struct ballot* ballot_t;

This type is abstract in the sense that other files that include src/bal-

lot.h will know that type ballot_t is a pointer to some struct type,
but they won’t know anything about the definition of that struct. This
means that they can create, manipulate, and destroy struct ballot

objects only via the functions also declared in src/ballot.h.
We will refer to the object that a ballot_t points to as a ballot. The

src/ballot.h header declares eight functions for working with ballots:
two for managing their lifecycles, two for modifying them, two for
querying them, one for reading a ballot from an input stream, and
one for formatting a ballot on output stream. Additionally, it declares
a function eor standardizing candidate names.

• ballot_t ballot_create(void) allocates a new, empty ballot
on the heap and returns a pointer to it. Every successful call to
ballot_create() allocates a new object that must subsequently be
deallocated exactly once using ballot_destroy.

Ownership: The caller takes ownership of the result.

Errors: Exits with error code 2 if memory cannot be allocated.

• void ballot_destroy(ballot_t ballot) deallocates all memory
associated with ballot. ballot may be NULL, in which case this
function does nothing.

Ownership: Takes ownership of ballot.

Errors: If ballot has already been destroyed or wasn’t returned by
ballot_create() in the first place then this function has undefined
behavior.

• void ballot_insert(ballot_t ballot, char* name) standardizes
name with clean_name and adds it to the end of the ballot.

Ownership:

– Borrows ballot transiently.

– Takes ownership of name, which means that 1) name must have
been allocated with malloc and owned by the caller prior to the
call, and 2) the caller cannot access name again after the call.

Errors: Exits with error code 3 if the ballot is full ((i.e., adding this
name would exceed MAX_CANDIDATES).

eecs 211 homework 4 5

• void ballot_eliminate(ballot_t ballot, const char* name) One important principle of
API design is that what can be
done can also be undone. The
presence of ballot_eliminate
without a ballot_reinstate to
reverse it violates this princi-
ple, but the algorithm doesn’t
require it, so you don’t need to
implement it.

marks candidate name, if present, as no longer active.

Ownership: Both arguments are borrowed transiently.

• const char* ballot_leader(ballot_t ballot) returns the first
still-active candidate, or NULL if no active candidates remain.

Ownership: The result is borrowed from the ballot argument and
is valid only as long as the argument is.

• void count_ballot(vote_count_t vc, ballot_t ballot) counts a
ballot into an existing vote_count_t by incrementing the count of
the leading (first active) candidate. If there is no leading candidate
then this function has no effect.

Ownership: Both arguments are borrowed transiently.

Errors: If there is no more room in the vote_count_t (meaning
vc_update returns NULL) then it exits with error code 4.

• ballot_t read_ballot(FILE* inf) reads a single ballot from input In C, FILE* is the type for repre-
senting an open file. To read a
line at a time from a FILE*, use
the lib211 function fread_line(3),
which is like read_line(3) but
takes a FILE* argument to read
from.

file handle inf. It reads one name per line until reaching either
EOF or a percent sign on a line by itself, and it standardizes each
candidate name using the clean_name function (described below)
before storing it in the ballot.

Ownership:

– The argument is borrowed transiently.

– The caller takes ownership of the result and must deallocate it
with ballot_destroy when finished with it.

Errors:

– Exits with an error code if memory cannot be allocated.

– Exits with error code 3 if the number of names read exceeds
MAX_CANDIDATES.

• void print_ballot(FILE* outf, ballot_t) prints a ballot to the The FILE type is declared in
<stdio.h>. A FILE* represent-
ing an open file on disk may
be obtained using the fopen(3)
function and released using the
fclose(3) function. The console
streams stdin, stdout, and
stderr are pre-opened FILE*s.

given file handle in a human-readable format. This function is
implemented for you.

Ownership: Both arguments are borrowed transiently.

• void clean_name(char* name) standardizes argument name in-place
by removing all non-alphabetic chars and converting all lowercase
letters to uppercase.

Ownership: The argument is borrowed transiently.

eecs 211 homework 4 6

src/ballot_box.c

In this file, you will implement a collection of owned ballots as a
linked list. This collection, which we will call a ballot box, is the main
data structure on which the IRV algorithm, also defined in this file,
will operate.

The header src/ballot_box.h defines one type, intended to represent
a whole ballot box.

typedef struct bb_node* ballot_box_t;

This type is abstract in the sense that other files that include src/bal-

lot_box.h will know that type ballot_box_t is a pointer to some struct
type, but they won’t know anything about the definition of that
struct. This means that they can modify, query, and destroy ballot
box objects only via the functions also declared in src/ballot_box.h.
However, unlike the other abstract types we’ve implemented, the null
pointer is a valid ballot_box_t, representing the empty ballot box.

The src/ballot_box.h header declares six functions for working with
ballot boxes: one for managing their lifecycles, two for modifying
them (one implemented for you already), one for querying them,
one for reading a ballot box from a file or input stream, and the IRV
algorithm itself.

• void bb_destroy(ballot_box_t bb) deallocates the memory associ-
ated with a ballot box, including all of its ballots (which it owns).
bb may be null.

Ownership: Takes ownership of the argument in order to release
its resources.

• void bb_insert(ballot_box_t* bbp, ballot_t ballot) adds a
ballot to a ballot box. Takes a pointer to the ballot_box_t, or in
other words, a struct bb_node**, and updates it in place.

This function is already implemented for you.

Preconditions:

– bbp is non-null.

– *bbp is initialized (but may be null).

Ownership:

– Borrows bbp transiently, but takes ownership of the old val-
ues of *bbp, in the sense that any other references to *bbp are
invalidated after the call.

– Takes ownership of ballot; thus, the caller must own ballot

before the call, and must not access it again after bb_insert

returns.

eecs 211 homework 4 7

Errors: Calls perror("bb_insert") and exit(1) on out-of-memory.

• void bb_eliminate(ballot_box_t bb, const char* candidate)

eliminates all votes for the given candidate.

Ownership: Borrows both arguments transiently.

• vote_count_t bb_count(ballot_box_t bb) creates a new vote_count_t

and uses it to count each ballot’s leading candidate (i.e., the candi-
date returned by ballot_leader, if any).

Ownership:

– Borrows the argument transiently.

– The caller takes ownership of the result and must release it with
vc_destroy.

Errors:

– Exits with a non-zero error code if vc_update cannot allocate
memory.

– Calls count_ballot, which exits with error code 4 if it cannot
allocate memory.

• ballot_box_t read_ballot_box(FILE* inf) reads ballots from the
given file handle until there are none left to read.

Precondition: inf must be open for reading, as by fopen(3).

Ownership:

– Borrows the argument transiently.

– The caller takes ownership of the result and must release it with
bb_destroy.

Errors: Calls read_ballot and bb_insert, which exit with a non-
zero error code if they cannot allocate memory.

• char* get_irv_winner(ballot_box_t bb) runs the IRV algorithm
and returns the name of the winner as an owned string.

Ownership:

– Borrows the argument transiently.

– The caller takes ownership of the result and must free it.

Errors: Returns NULL if there are no votes and thus no winner.

Hints

In this section we provide suggestions, including descriptions of
some algorithms and help interpreting the specification.

eecs 211 homework 4 8

Name standardization

Function clean_name is specified to transform a string “in place,” In ISL+λ terms, (clean_name s)

is like (map toupper (filter

isalpha s)), but by modifying
s. See isalpha(3) and toupper(3).

which means that it doesn’t allocate, but modifies the chars in
the the string it is given. Such an approach was not possible for
expand_charset because the string often gets longer. But when all we
want to do is filter and/or map chars one by one, doing it in place is
straightforward.

To do so, you need to track two positions in the same string, which As before, you can use two
char*s that both move, or one
fixed char* and two size_t

offsets that move. Note that
mixed approaches tend to be
confusing, if even they work at
all.

I will call the source and the destination. We consider each source
character in turn until the source position reaches the terminating 0.
To retain and map a source character, we convert it, store the result
at the destination, and then advance both positions. To remove a
character, we merely advance the source position. Notice that as
we remove chars, the destination position falls behind the source
position, but it can never get ahead, which means we are never in
danger of overwriting the source before we get there.

When the loop terminates, we must store a terminating 0 at the
destination position before returning.

Testing

You will need to test your code thoroughly, both to ensure its correct-
ness and for self evaluation.

File test/test_ballot.c contains one test case for some of the ballot
functions, which may help give you an idea how to use the abstrac-
tion and test it further.

One important thing to test is the interaction between a ballot
and a vote count map as implemented by count_ballot. You should
complete function test_ballot_with_vc to test this scenario: Create
a ballot that initially ranks three candidates (henceforth A, B, and
C). Starting with a fresh vote count map, count the ballot once and
confirm one vote for A and none for the others. Count again and
confirm all the votes. Eliminate B, count again, and confirm that
A has gone to 3 while the others remain at zero. Then eliminate A,
count, and confirm a first vote for C. Eliminate C, so that the ballot
has no active candidate, and confirm that counting the ballot again
has no effect on the counts.

File test/test_ballot_box.c contains three test cases written using a
function assert_election, which takes the winner and all ballots as
arguments, builds the ballot box, runs the IRV algorithm, and con-
firms the result. You should probably add more such test cases, but
note that this is not enough to test your input routines read_ballot

and read_ballot_box. When called from irv.c, read_ballot_box
(and thus read_ballot are passed stdin, in order to read from the

eecs 211 homework 4 9

console. But for testing, you may want to read from actual files.
Here is a procedure to set up testing of the input routines on files:

1. Create a subdirectory Resources in your project directory.

2. In the Resources directory, create files containing the text you want
the functions to read. Use a good naming scheme, with either
names describing each scenario (e.g., one_ballot_one_vote.in) or sys-
tematic names based on the function to be tested and numbering
(e.g., ballot_box_6.in).

3. Write a function in each test program that takes a filename as a If you run your test pro-
grams from the same direc-
tory that your Makefile is
in then you’ll be able to re-
fer to files from your code
using relative paths such as
"Resources/ballot_4.in" and
"Resources/ballot_box_6.in".

const char*, opens the file using fopen(3), reads the file using the
function under test, closes the file using fclose(3), and then returns
the new object that was read.

4. Add tests that use the functions from step 3 to read the files from
step 2 and confirm that the results are as you expect.

Ballot representation

Unlike vote_count_t, which was defined as a pointer to an array,
ballot_t is a pointer to a struct containing an array.

A ballot b contains b->length candidates in the first b->length
elements of the b->entries array, so that prefix of elements must
be initialized. For each entry i < b->length, b->entries[i].name is
a non-null pointer to an owned string that has been standardized
so that all of its chars are uppercase letters. The active field in
each entry indicates whether the associated candidate is still in the
running or has been eliminated.

The ballot_t type uses a different invariant than vote_count_t This means that iterating over
a ballot is simpler than iter-
ating over a vote count map,
because the loop condition only
needs one comparison—i <

ballot->length—instead of two
like the libvc functions did.

to keep track of how many entries it contains. Rather than storing
NULL pointers in the candidate names of all unused slots, the length

field stores the count of how many slots are in use. The remaining
MAX_CANDIDATES - length elements should be left uninitialized until
they are needed to store additional candidates.

Ballot box representation

We represent a ballot box as linked list of struct bb_nodes containing
owned ballot_ts:

struct bb_node

{

ballot_t ballot;

struct bb_node* next;

};

eecs 211 homework 4 10

Using a linked list allows us to expand smoothly to accomodate
any number of ballots (within the limits of memory) without either
preallocating an array to some limit or implementing dynamic array
growth.

Unlike the other pointer-to-struct types we have seen, ballot_box_t
uses the null pointer as a valid representation. In particular, NULL is Linked lists often use a null

pointer to represent the empty
list.

how we represent the empty ballot box, and we only allocate nodes
when there are ballots to store.

When non-null, the head pointer of a ballot_box_t owns the entire
list—all of the ballots and all of the list nodes. This means that
bb_destroy must deallocate all of the ballots and all of the list nodes.
And this means that isn’t advisable for client code to hold onto
pointers to nodes deeper in the list.

Iterating over a linked list

To iterate over a linked list you need a node pointer current to
keep track of your position in the list, starting at the head pointer
(meaning the value of the ballot_box_t, which is either null or points
to the first node). The loop termination condition is when current is
null. Otherise, current points to a node, which contains an element
(current->ballot) and a pointer to the next node. To advance along
the list, assign the pointer to the next node to current:

current = current ->next;

A special case of iterating over a linked list is deallocating the list,
in which case the assignment above does not suffice. In bb_destroy,
care must be taken to save each current->next in a temporary vari-
able before freeing each current.

Ownership strategy

A ballot box owns all of its ballots, and the ballots, in turn, own all of
the candidate name strings. This implies that bb_destroy(bb) must
free all of bb’s nodes and call ballot_destroy on all of bb’s ballots;
and it implies that ballot_destroy(ballot) must in turn free all of
ballot’s candidate names before freeing ballot.

Unlike vc_update, which takes a borrowed string, ballot_insert
takes ownership of the string that it is passed. This makes sense be-
cause ballot_insert always (except in error cases) needs ownership
of the string, whereas vc_update only needs ownership when encoun-
tering a candidate name that is not yet in the given vote count map.
This contract has implications for ballot_insert’s caller: the caller
must pass a string that it owns (which implies heap allocation by the
caller this time). And because the caller gives up ownership, it must

eecs 211 homework 4 11

not access or attempt to deallocate the string after ballot_insert

returns.
This ownership transfer also implies that ballot_insert never

needs to allocate.
Finally, the get_irv_winner function also has an ownership situa-

tion you may find puzzling. The string that get_irv_winner returns
to its caller comes with ownership and must be freed by the caller.
Why? To implement the IRV algorithm, get_irv_winner must create
and destroy a vote count map for each round of counting. In the
last round of counting, the winner is the candidate name returned
by vc_max, which is a string borrowed from the vote count map. De-
stroying the vote count map before returning is get_irv_winner’s
responsibility as owner, but once vc_destroy is called, the old result
of vc_max is no longer valid! Thus, once the winner is determined,
get_irv_winner must make a copy of the winner string to return, and
it must make that copy before it deallocates the vote count map.

The IRV algorithm

The IRV algorithm takes a ballot box as input and returns the name
of the winner of the election. The algorithm proceeds in rounds as
follows. In each round, starting with an empty vote count map, we
count every ballot in the ballot box into the vote count map. This
means incrementing the count for the leading (first active) candidate
on each ballot. If one candidate has a majority, meaning more than
half the total cast votes, then that candidate is the winner. Otherwise,
the candidate with the fewest votes is eliminated, and we proceed to
the next round.

Note that the above description of the algorithm does not describe
the necessary resource management, so it is up to you to combine the
algorithm description in this section with the discussion of ownership
in the previous section.

Note also that the algorithm as stated is ambiguous because
it doesn’t specify how to break ties for the fewest votes. But our
particular specification of vc_min, which breaks ties for elimination by
returning the most recently added candidate, completely determines
all decisions, including the elimination step.

Deliverables and evaluation

For this homework you must:

1. Complete the seven unimplemented ballot functions and clean_name

in src/ballot.c, as specified above.

eecs 211 homework 4 12

2. Complete the four unimplemented ballot box functions and
get_irv_winner in src/ballot_box.c, as specified above.

3. Add more test cases to test/test_ballot.c and test/test_ballot_box.c in
order to the test functions that you wrote.

As usual, self evaluation will spot-check your test coverage by
asking for just a few particular test cases. One of those cases is
described in the Hints section. You can’t anticipate what other cases
we may ask about, so you should try to cover everything.

Grading will be based on:

• the correctness of your implementations with respect to the specifi-
cations,

• the presence of sufficient test cases to ensure your code’s correct-
ness, and

• adherance to the EECS 211 Style Manual.

Submission

Homework submission and grading will use the GSC grading server.
You must upload any files that you create or change.

For this homework, that will include src/ballot.c, src/ballot_box.c,
test/test_ballot.c, and test/test_ballot_box.c. (You should not need to
submit a modified Makefile and you must not modify any of the .h

files.
If you work with a partner then you must register your partner- Be careful with partner regis-

tration, because once a partner
request is accepted, undoing
it requires an appeal to the
instructor.

ship before submitting using either the gsc partner request and
gsc partner accept commands or on the GSC website. See the
gsc(1) manual page for details.

Once a partner request is accepted, you and your partner’s submis-
sions are joined together. When one partner uploads files or performs
self evaluation, the results will be visible to both.

http://users.eecs.northwestern.edu/~jesse/course/eecs211/style.html

	Purpose
	Preliminaries
	Background
	Orientation
	Specifications
	Hints
	Deliverables and evaluation
	Submission

